• Title/Summary/Keyword: Fractional order differential equations

Search Result 48, Processing Time 0.043 seconds

SEMI-ANALYTICAL SOLUTION TO A COUPLED LINEAR INCOMMENSURATE SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS

  • Iqbal M. Batiha;Nashat Alamarat;Shameseddin Alshorm;O. Y. Ababneh;Shaher Momani
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.2
    • /
    • pp.449-471
    • /
    • 2023
  • In this paper, we study a linear system of homogeneous commensurate /incommensurate fractional-order differential equations by developing a new semi-analytical scheme. In particular, by decoupling the system into two fractional-order differential equations, so that the first equation of order (δ + γ), while the second equation depends on the solution for the first equation, we have solved the under consideration system, where 0 < δ, γ ≤ 1. With the help of using the Adomian decomposition method (ADM), we obtain the general solution. The efficiency of this method is verified by solving several numerical examples.

NUMERICAL SOLUTIONS FOR SPACE FRACTIONAL DISPERSION EQUATIONS WITH NONLINEAR SOURCE TERMS

  • Choi, Hong-Won;Chung, Sang-Kwon;Lee, Yoon-Ju
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.6
    • /
    • pp.1225-1234
    • /
    • 2010
  • Numerical solutions for the fractional differential dispersion equations with nonlinear forcing terms are considered. The backward Euler finite difference scheme is applied in order to obtain numerical solutions for the equation. Existence and stability of the approximate solutions are carried out by using the right shifted Grunwald formula for the fractional derivative term in the spatial direction. Error estimate of order $O({\Delta}x+{\Delta}t)$ is obtained in the discrete $L_2$ norm. The method is applied to a linear fractional dispersion equations in order to see the theoretical order of convergence. Numerical results for a nonlinear problem show that the numerical solution approach the solution of classical diffusion equation as fractional order approaches 2.

FRACTIONAL HYBRID DIFFERENTIAL EQUATIONS WITH P-LAPLACIAN OPERATOR

  • CHOUKRI DERBAZI;ABDELKRIM SALIM;HADDA HAMMOUCHE;MOUFFAK BENCHOHRA
    • Journal of Applied and Pure Mathematics
    • /
    • v.6 no.1_2
    • /
    • pp.21-36
    • /
    • 2024
  • In this paper, we study the existence of solutions for hybrid fractional differential equations with p-Laplacian operator involving fractional Caputo derivative of arbitrary order. This work can be seen as an extension of earlier research conducted on hybrid differential equations. Notably, the extension encompasses both the fractional aspect and the inclusion of the p-Laplacian operator. We build our analysis on a hybrid fixed point theorem originally established by Dhage. In addition, an example is provided to demonstrate the effectiveness of the main results.

REGULARITY FOR FRACTIONAL ORDER RETARDED NEUTRAL DIFFERENTIAL EQUATIONS IN HILBERT SPACES

  • Cho, Seong Ho;Jeong, Jin-Mun;Kang, Yong Han
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.1019-1036
    • /
    • 2016
  • In this paper, we study the existence of solutions and $L^2$-regularity for fractional order retarded neutral functional differential equations in Hilbert spaces. We no longer require the compactness of structural operators to prove the existence of continuous solutions of the non-linear differential system, but instead we investigate the relation between the regularity of solutions of fractional order retarded neutral functional differential systems with unbounded principal operators and that of its corresponding linear system excluded by the nonlinear term. Finally, we give a simple example to which our main result can be applied.

HIGHER ORDER NONLOCAL NONLINEAR BOUNDARY VALUE PROBLEMS FOR FRACTIONAL DIFFERENTIAL EQUATIONS

  • Khan, Rahmat Ali
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.329-338
    • /
    • 2014
  • In this paper, we study the method of upper and lower solutions and develop the generalized quasilinearization technique for the existence and approximation of solutions to some three-point nonlocal boundary value problems associated with higher order fractional differential equations of the type $$^c{\mathcal{D}}^q_{0+}u(t)+f(t,u(t))=0,\;t{\in}(0,1)$$ $$u^{\prime}(0)={\gamma}u^{\prime}({\eta}),\;u^{\prime\prime}(0)=0,\;u^{\prime\prime\prime}(0)=0,{\ldots},u^{(n-1)}(0)=0,\;u(1)={\delta}u({\eta})$$, where, n-1 < q < n, $n({\geq}3){\in}\mathbb{N}$, 0 < ${\eta},{\gamma},{\delta}$ < 1 and $^c\mathcal{D}^q_{0+}$ is the Caputo fractional derivative of order q. The nonlinear function f is assumed to be continuous.

ANALYTIC TRAVELLING WAVE SOLUTIONS OF NONLINEAR COUPLED EQUATIONS OF FRACTIONAL ORDER

  • AN, JEONG HYANG;LEE, YOUHO
    • Honam Mathematical Journal
    • /
    • v.37 no.4
    • /
    • pp.411-421
    • /
    • 2015
  • This paper investigates the issue of analytic travelling wave solutions for some important coupled models of fractional order. Analytic travelling wave solutions of the considered model are found by means of the Q-function method. The results give us that the Q-function method is very simple, reliable and effective for searching analytic exact solutions of complex nonlinear partial differential equations.

THREE-POINT BOUNDARY VALUE PROBLEMS FOR HIGHER ORDER NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS

  • Khan, Rahmat Ali
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.1_2
    • /
    • pp.221-228
    • /
    • 2013
  • The method of upper and lower solutions and the generalized quasilinearization technique is developed for the existence and approximation of solutions to boundary value problems for higher order fractional differential equations of the type $^c\mathcal{D}^qu(t)+f(t,u(t))=0$, $t{\in}(0,1),q{\in}(n-1,n],n{\geq}2$ $u^{\prime}(0)=0,u^{\prime\prime}(0)=0,{\ldots},u^{n-1}(0)=0,u(1)={\xi}u({\eta})$, where ${\xi},{\eta}{\in}(0,1)$, the nonlinear function f is assumed to be continuous and $^c\mathcal{D}^q$ is the fractional derivative in the sense of Caputo. Existence of solution is established via the upper and lower solutions method and approximation of solutions uses the generalized quasilinearization technique.

SPECTRAL-COLLOCATION METHOD FOR FRACTIONAL FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS

  • Yang, Yin;Chen, Yanping;Huang, Yunqing
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.203-224
    • /
    • 2014
  • We propose and analyze a spectral Jacobi-collocation approximation for fractional order integro-differential equations of Fredholm-Volterra type. The fractional derivative is described in the Caputo sense. We provide a rigorous error analysis for the collection method, which shows that the errors of the approximate solution decay exponentially in $L^{\infty}$ norm and weighted $L^2$-norm. The numerical examples are given to illustrate the theoretical results.

A PREDICTOR-CORRECTOR METHOD FOR FRACTIONAL EVOLUTION EQUATIONS

  • Choi, Hong Won;Choi, Young Ju;Chung, Sang Kwon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1725-1739
    • /
    • 2016
  • Abstract. Numerical solutions for the evolutionary space fractional order differential equations are considered. A predictor corrector method is applied in order to obtain numerical solutions for the equation without solving nonlinear systems iteratively at every time step. Theoretical error estimates are performed and computational results are given to show the theoretical results.

A NONRANDOM VARIATIONAL APPROACH TO STOCHASTIC LINEAR QUADRATIC GAUSSIAN OPTIMIZATION INVOLVING FRACTIONAL NOISES (FLQG)

  • JUMARIE GUY
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.19-32
    • /
    • 2005
  • It is shown that the problem of minimizing (maximizing) a quadratic cost functional (quadratic gain functional) given the dynamics dx = (fx + gu)dt + hdb(t, a) where b(t, a) is a fractional Brownian motion of order a, 0 < 2a < 1, can be solved completely (and meaningfully!) by using the dynamical equations of the moments of x(t). The key is to use fractional Taylor's series to obtain a relation between differential and differential of fractional order.