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SPECTRAL-COLLOCATION METHOD FOR FRACTIONAL

FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS

Yin Yang, Yanping Chen, and Yunqing Huang

Abstract. We propose and analyze a spectral Jacobi-collocation approx-

imation for fractional order integro-differential equations of Fredholm-
Volterra type. The fractional derivative is described in the Caputo sense.

We provide a rigorous error analysis for the collection method, which
shows that the errors of the approximate solution decay exponentially in

L∞ norm and weighted L2-norm. The numerical examples are given to

illustrate the theoretical results.

1. Introduction

Many phenomena in engineering, physics, chemistry, and other sciences can
be described very successfully by models using mathematical tools from frac-
tional calculus, i.e., the theory of derivatives and integrals of fractional non-
integer order. This allows one to describe physical phenomena more accu-
rately. Moreover, fractional calculus is applied to model the frequency depen-
dent damping behavior of many viscoelastic materials, economics and dynamics
of interfaces between nanoparticles and substrates. Recently, several numer-
ical methods to solve fractional differential equations (FDEs) and fractional
integro-differential equations (FIDEs) have been proposed.

In this article, we are concerned with the numerical study of the following
fractional Fredholm integro-differential equation:

(1)

Dγy(t) = y(t) +

∫ t

0

k1(t, τ)y(τ)dτ +

∫ T

0

k2(t, ς)y(ς)dς + f(t),

0 < γ < 1, t ∈ [0, T ],

y(0) = y0,
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where the source function f and the kernel function k1, k2 are given, the
function y(t) is the unknown one and y0 ∈ R. Here, the given functions
f, k1, k2 are assumed to be sufficiently smooth on their respective domains
I and 0 ≤ τ ≤ t ≤ T . In the equation (1), Dγ denotes the fractional derivative
of order γ defined as a Caputo derivative.

Differential and integral equations involving derivatives of non-integer order
have shown to be adequate models for various phenomena arising in damp-
ing laws, diffusion processes, models of earthquake [15], fluid-dynamics traffic
model [16], mathematical physics and engineering [29], fluid and continuum
mechanics [25], chemistry, acoustics and psychology [2].

Let Γ(·) denote the Gamma function. For any positive integer n and n−1 <
γ < n, the Caputo derivative Dγf(t) is defined as follows:

(2) Dγf(t) =
1

Γ(n− γ)

∫ t

a

f (n)(τ)

(t− τ)(γ−n+1)
dτ, t ∈ [a, b].

Also, the Riemann-Liouville fractional integral Iγ of order γ is defined as

(3) Iγf(t) =
1

Γ(γ)

∫ t

a

(t− τ)γ−1f(τ)dτ.

We note that

(4) Iγ(Dγf(t)) = f(t)−
n−1∑
k=0

f (k)(a)
tk

k!
.

From (4), the fractional integro-differential equation (1) can be described as

Dγy(t) = y(t) +

∫ t

0

k1(t, τ)y(τ)dτ +

∫ T

0

k2(t, ς)y(ς)dς + f(t),

0 < γ < 1, t ∈ [0, T ],

y(t) =
1

Γ(γ)

∫ t

0

(t− τ)γ−1Dγy(τ)dτ + y(0).

(5)

Several methods have been introduced to solve FDEs in analytical and nu-
merical frames. Analytical methods include various transformation techniques
[18], operational calculus methods [24], the Adomian decomposition method
[38], and the iterative and series-based method [37]. A small number of algo-
rithms for the numerical solution of FDEs have been suggested [1], and most of
them are finite difference methods, which are generally limited to low dimen-
sions and are of limited accuracy.

As we know, fractional derivatives are global (they are defined by an integral
over the whole interval [0, T ]), and therefore global methods such as spectral
methods are perhaps better suited for FDEs. Standard spectral methods pos-
sess an infinite order of accuracy for the equations with regular solutions, while
failing for many complicated problems with singular solutions. So, it is relevant
to be interested in how to enlarge the adaptability of spectral methods, and
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construct certain simple approximation schemes without a loss of accuracy for
more complicated problems.

Spectral methods have been proposed to solve fractional differential equa-
tions, such as the Legendre collocation method [20, 36], Legendre wavelets
method [32, 34], homotopy perturbation method [40] and Jacobi-Gauss-Lobatto
collocation method [4]. The authors in [12, 13, 39] constructed an efficient spec-
tral method for the numerical approximation of fractional integro-differential
equations based on tau and pseudo-spectral methods. Moreover, Bhrawy et
al. [7] introduced a quadrature shifted Legendre tau method based on the
Gauss-Lobatto interpolation for solving multi-order FDEs with variable coef-
ficients and in [6], shifted Legendre spectral methods have been developed for
solving fractional-order multi-point boundary value problems. In [35], trun-
cated Legendre series together with the Legendre operational matrix of frac-
tional derivatives are used for the numerical integration of fractional differential
equations. In [8] the authors derived a new explicit formula for the integral
of shifted Chebyshev polynomials of any degree for any fractional-order. The
shifted Chebyshev operational matrix [5] and shifted Jacobi operational matrix
[14] of fractional derivatives have been developed, which are applied together
with the spectral tau method for numerical solution of general linear multi-term
fractional differential equations. However, very few theoretical results were pro-
vided to justify the high accuracy numerically obtained. Recently, Chen and
Tang [10, 41] developed a novel spectral spectral Jacobi-collocation method to
solve second kind Volterra integral equations with a weakly singular kernel and
provided a rigorous error analysis which theoretically justifies the spectral rate
of convergence. Inspired by the work of [41], we extend the approach to frac-
tional order integro-differential equations and provide a rigorous convergence
analysis for the Jacobi-collocation method, which indicates that the proposed
method converges exponentially provided that the data in the given FIDE are
smooth.

This paper is organized as follows. In Section 2, we outline the spectral
approach for (1). Some lemmas useful for establishing the convergence result
will be provided in Section 3. The convergence analysis will be carried out in
Section 4, and Section 5 contains numerical results, which will be used to verify
the theoretical result obtained in Section 4.

2. Jacobi-collocation method

Let ωα,β(x) = (1 − x)α(1 + x)β be a weight function in the usual sense
for α, β > −1. The set of Jacobi polynomials {Jα,βn (x)}∞n=0 forms a complete
L2
ωα,β (−1, 1) -orthogonal system, where L2

ωα,β (−1, 1) is a weighted space defined
by

L2
ωα,β (−1, 1) = {v : v is measurable and ‖ v ‖ωα,β<∞},
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equipped with the norm

‖ v ‖ωα,β=

(∫ 1

−1

|v(x)|2ωα,β(x)dx

) 1
2

,

and the inner product

(u, v)ωα,β =

∫ 1

−1

u(x)v(x)ωα,β(x)dx ∀u, v ∈ L2
ωα,β (−1, 1).

For a given N ≥ 0, we denote by {θk}Nk=0 the Legendre points, and by

{ωk}Nk=0 the corresponding Legendre weights (i.e., Jacobi weights {ω0,0
k }Nk=0).

Then, the Legendre-Gauss integration formula is∫ 1

−1

f(x)dx ≈
N∑
k=0

f(θk)ωk,(6)

where ωk = ω0,0(xk). Similarly, we denote by {θ̃k}Nk=0 the Jacobi-Gauss points,

and by {ωα,βk }Nk=0 the corresponding Jacobi weights. Then, the Jacobi-Gauss
integration formula is∫ 1

−1

f(x)ωα,β(x)dx ≈
N∑
k=0

f(θ̃k)ωα,βk ,(7)

where ωα,βk = ωα,β(xk).

For a given positive integer N , we denote the collocation points by {xα,βi }Ni=0,
which is the set of (N + 1) Jacobi-Gauss points, corresponding to the weight
ωα,β(x). Let PN denote the space of all polynomials of degree not exceeding
N . For any v ∈ C[−1, 1], we can define the Lagrange interpolating polynomial

Iα,βN v ∈ PN , satisfying

Iα,βN v(xα,βi ) = v(xα,βi ), 0 ≤ i ≤ N.

The Lagrange interpolating polynomial can be written in the form

Iα,βN v(x) =

N∑
i−0

v(xα,βi )Fi(x), 0 ≤ i ≤ N,

where Fi(x) is the Lagrange interpolation basis function associated with

{xα,βi }
N
i=0.

For the sake of applying the theory of orthogonal polynomials, we use the
change of variables to transfer the integration interval [0, T ] to a fixed interval
I =: [−1, 1],

t =
1

2
T (1 + x), x =

2t

T
− 1,

τ =
1

2
T (1 + s), s =

2τ

T
− 1,
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ς =
1

2
T (1 + ξ), ξ =

2ς

T
− 1,

and let

u(x) = y(
1

2
T (1 + x)), Dγu(x) = Dγy(

1

2
T (1 + x)), g(x) = f(

1

2
T (1 + x)),

K1(x, s)=
T

2
k1(

1

2
T (1 + x),

1

2
T (1 + s)),K2(x, ξ)=

T

2
k2(

1

2
T (1 + x),

1

2
T (1 + ξ)).

The fractional integro-differential equation in one dimension (1) or (5) is of the
form

Dγu(x) = u(x) +

∫ x

−1

K1(x, s)u(s)ds+

∫ 1

−1

K2(x, ξ)u(ξ)dξ + g(x),(8a)

0 < γ < 1, x ∈ I,

u(x) =
1

Γ(γ)

(
T

2

)γ ∫ x

−1

(x− s)γ−1Dγu(s)ds+ u(−1).(8b)

Let −µ = γ − 1. Set the collocation points {x−µ,−µi }Ni=0 as the set of (N + 1)
Jacobi-Gauss points associated with ω−µ,−µ(x). Assume that Eq. (8) holds at

x−µ,−µi :

Dγu(x−µ,−µi ) = u(x−µ,−µi ) +

∫ x−µ,−µi

−1

K1(x−µ,−µi , s)u(s)ds(9a)

+

∫ 1

−1

K2(x−µ,−µi , ξ)u(ξ)dξ + g(x−µ,−µi ),

u(x−µ,−µi ) =
1

Γ(γ)

(
T

2

)γ ∫ x−µ,−µi

−1

(x−µ,−µi − s)−µDγu(s)ds+ u(−1).(9b)

The main difficulty in obtaining a high order of accuracy is to compute the
integral term in (9). In particular, for small values of x−µ,−µi , there is little
information available for u(s). To overcome this difficulty, we will transfer the

integration interval [−1, x−µ,−µi ] for a fixed i to a fixed interval [−1, 1], and
then make use of some appropriate quadrature rule. More precisely, we first
make a simple linear transformation:

(10) s(x, θ) =
1 + x

2
θ +

x− 1

2
, −1 ≤ θ ≤ 1.

Then (9) becomes

Dγu(x−µ,−µi )(11a)

= u(x−µ,−µi )

+
1 + x−µ,−µi

2

∫ 1

−1

K1(x−µ,−µi , s(x−µ,−µi , θ))u(s(x−µ,−µi , θ))dθ

+

∫ 1

−1

K2(x−µ,−µi , ξ)u(ξ)dξ + g(x−µ,−µi ),
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u(x−µ,−µi )(11b)

=
1

Γ(γ)

(
T (1 + x−µ,−µi )

4

)γ ∫ 1

−1

(1− θ)−µDγu(s(x−µ,−µi , θ))ds+ u(−1).

Next, using a (N +1)-point Gauss quadrature formula relative to the Legendre

weights {ωk}Nk=0 (i.e., Jacobi weights {ω0,0
k }Nk=0), the integration term in (11a)

can be approximated by∫ 1

−1

K1(x−µ,−µi , s(x−µ,−µi , θ))u(s(x−µ,−µi , θ))dθ(12)

≈
N∑
k=0

K1(x−µ,−µi , s(x−µ,−µi , θk))u(s(x−µ,−µi , θk))ω0,0
k ,

(13)

∫ 1

−1

K2(x−µ,−µi , ξ)u(ξ)dξ ≈
N∑
k=0

K2(x−µ,−µi , θk)u(θk)ω0,0
k ,

where {θk}Nk=0 is the set of Jacobi-Gauss points corresponding to the set of

Jacobi weights {ω0,0
k }Nk=0, i.e., {θk}Nk=0 is Legendre-Gauss points.∫ 1

−1

(1− θ)µDγu(s(x−µ,−µi , θ̃))ds ≈
N∑
k=0

Dγu(s(x−µ,−µi , θ̃k))ω−µ,0k ,(14)

where {θ̃k}Nk=0 is the set of Jacobi-Gauss points corresponding to the weights

{ω−µ,0k }Nk=0.
We use

ui ≈ u(x−µ,−µi ), uγi ≈ D
γu(x−µ,−µi ), 0 ≤ i ≤ N

and

(15) U(x) =

N∑
j=0

ujFj(x), Uγ(x) =

N∑
j=0

uγjFj(x),

where Fj , j = 0, 1, . . . , N is the Lagrange interpolation basis functions associ-

ated with {x−µ,−µi }Ni=0 which is the set of N + 1 Jacobi-Gauss points. Com-
bining the above equation and (11a) yields

uγi = ui +
1 + x−µ,−µi

2

N∑
k=0

K1

(
x−µ,−µi , s(x−µ,−µi , θk)

) N∑
j=0

ujFj(s(x
−µ,−µ
i , θk))ω0,0

k

(16a)

+

N∑
k=0

K2(x−µ,−µi , θk)

N∑
j=0

ujFj(θk)ω0,0
k + g(x−µ,−µi )
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= ui +
1 + x−µ,−µi

2

N∑
j=0

uj

(
N∑
k=0

K1(x−µ,−µi , s(x−µ,−µi , θk))Fj(s(x
−µ,−µ
i , θk))ω0,0

k

)

+

N∑
j=0

uj

N∑
k=0

K2(x−µ,−µi , θk)Fj(θk)ω0,0
k + g(x−µ,−µi ),

ui =
1

Γ(γ)

(
T (1 + x−µ,−µi )

4

)γ N∑
k=0

N∑
j=0

uγjFj(s(x
−µ,−µ
i , θ̃k))ω−µ,0k

+ u(−1)

(16b)

=
1

Γ(γ)

(
T (1 + x−µ,−µi )

4

)γ N∑
j=0

uγj

(
N∑
k=0

Fj(s(x
−µ,−µ
i , θ̃k))ω−µ,0k

)
+ u(−1).

We can get the values of {ui}Ni=0 and {uγi }Ni=0 by solving the system of linear
equations (16) and obtain the expressions of U(x) and Uγ(x) accordingly.

3. Some useful lemmas

In this section, we will provide some elementary lemmas, which are impor-
tant for the derivation of the main results in the subsequent section.

Lemma 3.1 (see [9]). Assume that an (N+1)-point Gauss quadrature formula
relative to the Jacobi weight is used to integrate the product uϕ, where u ∈
Hm(I) with I for some m ≥ 1 and ϕ ∈ PN . Then there exists a constant C
independent of N such that

(17)

∣∣∣∣∫ 1

−1

u(x)ϕ(x)dx− (u, ϕ)N

∣∣∣∣ ≤ CN−m|u|Hm,N
ωα,β

(I)‖ϕ‖L2

ωα,β
(I),

where

(18)

|u|Hm,N
ωα,β

(I) =

 m∑
j=min(m,N+1)

‖u(j)‖2L2

ωα,β
(I)

1/2

,

(u, ϕ)N =

N∑
j=0

u(xj)ϕ(xj)ωj .

Lemma 3.2 (see [9, 41]). Assume that u ∈ Hm,N
ωα,β

(I) and denote by Iα,βN u
its interpolation polynomial associated with the (N + 1) Jacobi-Gauss points
{xj}Nj=0, namely,

Iα,βN u =

N∑
i=0

u(xi)F (xi).
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Then the following estimates hold:

‖u− Iα,βN u‖L2

ωα,β
(I) ≤ CN−m|u|Hm,N

ωα,β
(I),

(19a)

‖u− Iα,βN u‖L∞(I) ≤

{
CN

1
2−mlogN |u|Hm,N

ωc
(I), −1 ≤ α, β ≤ − 1

2 ,

CN1−γ−m|u|Hm,N
ωc

(I), γ = max(α, β), otherwise,

(19b)

where ωc = ω−
1
2 ,−

1
2 denotes the Chebyshev weight function.

Lemma 3.3 (see [26]). Assume that {Fj(x)}Nj=0 are the N -th degree Lagrange
basis polynomials associated with the Gauss points of the Jacobi polynomials.
Then,

(20)

‖Iα,βN ‖L∞(I) ≤ max
x∈[−1,1]

N∑
j=0

| Fj(x) |

=

{
O(logN), −1 < α, β ≤ − 1

2 ,

O(Nγ+ 1
2 ), γ = max(α, β), otherwise.

Lemma 3.4 (Gronwall inequality, see [17] Lemma 7.1.1). Suppose L ≥ 0,
0 < µ < 1, and u and v are a non-negative, locally integrable functions defined
on [−1, 1] satisfying

u(x) ≤ v(x) + L

∫ x

−1

(x− τ)−µu(τ)dτ.

Then there exists a constant C = C(µ) such that

u(x) ≤ v(x) + CL

∫ x

−1

(x− τ)−µv(τ)dτ for − 1 ≤ x < 1.

If a nonnegative integrable function E(x) satisfies

E(x) ≤ L
∫ x

−1

E(s)ds+ J(x), −1 < x ≤ 1,

where J(x) is an integrable function, then

‖E‖L∞(−1,1) ≤ C‖J‖L∞(−1,1),

‖E‖Lp
ω−α,β

(−1,1) ≤ C‖J‖Lp
ω−α,β

(−1,1), q ≥ 1.
(21)

Lemma 3.5 (see [30, 31]). For a nonnegative integer r and κ ∈ (0, 1), there
exists a constant Cr,κ > 0 such that for any function v ∈ Cr,κ([−1, 1]), there
exists a polynomial function TNv ∈ PN such that

(22) ‖v − TNv‖L∞(I) ≤ Cr,κN−(r+κ)‖v‖r,κ,
where ‖·‖r,κ is the standard norm in Cr,κ([−1, 1]), TN is a linear operator from
Cr,κ([−1, 1]) into PN , as stated in [30, 31].
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Lemma 3.6 (see [11]). Let κ ∈ (0, 1) and let M be defined by

(Mv)(x) =

∫ x

−1

(x− τ)−µK(x, τ)v(τ)dτ.

Then, for any function v ∈ C([−1, 1]), there exists a positive constant C such
that

|Mv(x′)−Mv(x′′)|
|x′ − x′′|

≤ C max
x∈[−1,1]

|v(x)|,

under the assumption that 0 < κ < 1− µ, for any x′, x′′ ∈ [−1, 1] and x′ 6= x′′.
This implies that

‖ Mv ‖0,κ≤ C max
x∈[−1,1]

|v(x)|, 0 < κ < 1− µ.

Lemma 3.7 (see [27]). For every bounded function v, there exists a constant
C, independent of v, such that

sup
N
‖

N∑
j=0

v(xj)Fj(x) ‖L2

ωα,β
(I)≤ C max

x∈[−1,1]
|v(x)|,

where Fj(x), j = 0, 1, . . . , N, are the Lagrange interpolation basis functions
associated with the Jacobi collocation points {xj}Nj=0.

Lemma 3.8 (see [22]). For all measurable functions f ≥ 0, the following
generalized Hardy’s inequality(∫ b

a

|(Tf)(x)|qu(x)dx

)1/q

≤

(∫ b

a

|f(x)|pv(x)dx

)1/p

holds if and only if

sup
a<x<b

(∫ b

x

u(t)dt

)1/q (∫ x

a

v1−p′(t)dt

)1/p′

<∞, p′ =
p

p− 1

for the case 1 < p ≤ q <∞. Here, T is an operator of the form

(TF )(x) =

∫ x

a

k(x, t)f(t)dt

with k(x, t) a given kernel, u, v are nonnegative weight functions, and −∞ ≤
a < b ≤ ∞.

4. Convergence analysis

This section is devoted to provide a convergence analysis for the numeri-
cal scheme. The goal is to show that the rate of convergence is exponential,
i.e., that spectral accuracy can be obtained for the proposed approximations.
Firstly, we will carry out our convergence analysis in the function space L∞(I).
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Theorem 4.1. Let u(x) be the exact solution of the fractional integro-different-
ial equation (8), which is assumed to be sufficiently smooth. Assume that U(x)
and Uγ(x) are obtained by using the spectral collocation scheme (16) together
with a polynomial interpolation (15). If γ associated with fractional order 0 <
γ < 1 and µ = 1− γ, u ∈ Hm+1

ω−µ,−µ(I), then

‖ Uγ −Dγu ‖L∞(I)(23)

≤

CN
γ− 1

2−m
(
K∗ ‖ u ‖L2(I) +N

1
2U
)
, 1

2 < γ < 1,

CN−m logN
(
K∗ ‖ u ‖L2(I) +N

1
2U
)
, 0 < γ ≤ 1

2 ,

‖ U − u ‖L∞(I)(24)

≤

CN
γ− 1

2−m
(
K∗ ‖ u ‖L2(I) +N

1
2U
)
, 1

2 < γ < 1,

CN−m logN
(
K∗ ‖ u ‖L2(I) +N

1
2U
)
, 0 < γ ≤ 1

2 ,

provided that N is sufficiently large, where C is a constant independent of N
but depends on the bound of the function K(x, s) and the index µ,

(25) K∗ = max
x∈[−1,1]

|K1(x, s(x, θ))|Hm,N
ω0,0 (I) + max

x∈[−1,1]
|K2(x, ξ)|Hm,N

ω0,0 (I),

(26) U = |Dγu|Hm,N
ωc

(I) + |u|Hm,N
ωc

(I).

Proof. Since Uγ(x) =
∑N
j=0 u

γ
jFj(x) ∈ PN , we have∫ 1

−1

(1− θ)−µUγ(s)ds =

N∑
k=0

Uγ(s(x−µ,−µi , θ̃k))ω−µ,0k ,

the numerical scheme (16) can be written as

uγi = ui +
1 + x−µ,−µi

2

∫ 1

−1

K1(x−µ,−µi , s(x−µ,−µi , θ))U(s(x−µ,−µi , θ))dθ(27a)

+

∫ 1

−1

K2(x−µ,−µi , ξ)U(ξ)dξ + Ii,1 + Ii,2 + g(x−µ,−µi ),

ui =
1

Γ(γ)

(
T (1 + x−µ,−µi )

4

)γ ∫ 1

−1

(1− θ)−µUγ(s)ds+ u(−1)(27b)

where

Ii,1 =
1 + x−µ,−µi

2

N∑
k=0

K1(x−µ,−µi , s(x−µ,−µi , θk))U(s(x−µ,−µi , θk))ω0,0
k

− 1 + x−µ,−µi

2

∫ 1

−1

K1(x−µ,−µi , s(x−µ,−µi , θ))U(s(x−µ,−µi , θ))dθ

Ii,2 =

N∑
k=0

K2(x−µ,−µi , θk)U(θk)ω0,0
k −

∫ 1

−1

K2(x−µ,−µi , ξ)U(ξ)dξ.
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Let e and eγ denote the error functions,

e(x) = U(x)− u(x), eγ(x) = Uγ(x)−Dγu(x).

Using the integration error estimates for the Jacobi-Gauss quadrature stated
in Lemma 3.1, we have

| Ii,1(x) |(28)

≤ CN−m max
x∈[−1,1]

|K1(x, s(x, θ))|Hm,N
ω0,0 (I) ‖ U ‖L2(I)

≤ CN−m max
x∈[−1,1]

|K1(x, s(x, θ))|Hm,N
ω0,0 (I)(‖ u ‖L2(I) + ‖ e ‖L∞(I)),

| Ii,2(x) |(29)

≤ CN−m max
x∈[−1,1]

|K2(x, ξ)|Hm,N
ω0,0 (I) ‖ U ‖L2(I)

≤ CN−m max
x∈[−1,1]

|K2(x, ξ)|Hm,N
ω0,0 (I)(‖ u ‖L2(I) + ‖ e ‖L∞(I)).

It follows from (9) and (11a) that

uγi = ui +

∫ x−µ,−µi

−1

K1(x−µ,−µi , s)U(s)ds+

∫ 1

−1

K2(x−µ,−µi , ξ)U(ξ)dξ(30a)

+ Ii,1 + Ii,2 + g(x−µ,−µi ),

ui =
1

Γ(γ)

(
T (1 + x−µ,−µi )

4

)γ ∫ x−µ,−µi

−1

(x−µ,−µi − s)−µUγ(s)ds+ u−1.(30b)

Multiplying by Fi(x) both sides of (30) and summing from 0 to N yield

Uγ(x) = U(x) + I−µ,−µN

∫ x

−1

K1(x, s)u(s)ds+ I−µ,−µN

∫ x

−1

K1(x−µ,−µ, s)e(s)ds

+ I−µ,−µN

∫ 1

−1

K2(x, s)u(s)ds+ I−µ,−µN

∫ 1

−1

K2(x−µ,−µ, s)e(s)ds

+ I−µ,−µN (g) + J1(x) + J2(x),

U(x) = I−µ,−µN

(
1

Γ(γ)

(
T (1 + x−µ,−µi )

4

)γ ∫ x

−1

(x− s)−µDγu(s)ds

)

+ I−µ,−µN

(
1

Γ(γ)

(
T (1 + x−µ,−µi )

4

)γ ∫ x

−1

(x− s)−µeγ(s)ds

)
+u(−1),

(31)

where

J1(x) =

N∑
i=0

Ii,1Fi(x), J2(x) =

N∑
i=0

Ii,2Fi(x).

It follows from (8) that

Uγ(x) = U(x) + I−µ,−µN (Dγu− u− g(x))(32)
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+ I−µ,−µN

(∫ x

−1

K1(x, s)e(s)ds+

∫ 1

−1

K2(x, s)e(s)ds

)
+ I−µ,−µN (g) + J1(x) + J2(x),

U(x) = I−µ,−µN u(x)

+ I−µ,−µN

(
1

Γ(γ)

(
T (1 + x−µ,−µi )

4

)γ ∫ x

−1

(x− s)−µeγ(s)ds

)
.

Then we have

eγ(x) = e(x) +

∫ x

−1

K(x, s)e(s)ds+ J1(x) + J2(x) + J3(x) + J4(x) + J5(x),

(33a)

e(x) =
1

Γ(γ)

(
T (1 + x−µ,−µi )

4

)γ ∫ x

−1

(x− s)−µeγ(s)ds+ J4(x) + J6(x),

(33b)

where

J3(x) = I−µ,−µN Dγu(x)−Dγu(x),

J4(x) = I−µ,−µN u(x)− u(x),

J5(x) = I−µ,−µN

(∫ x

−1

K(x, s)e(s)ds

)
−
∫ x

−1

K(x, s)e(s)ds,

J6(x) =
1

Γ(γ)

(
T (1 + x−µ,−µi )

4

)γ (
I−µ,−µN

∫ x

−1

(x− s)−µeγ(s)ds−
∫ x

−1

(x− s)−µeγ(s)ds

)
.

Due to (33b) and using the Dirichlet′s formula which states that∫ x

−1

∫ τ

−1

Φ(τ, s)dsdτ =

∫ x

−1

∫ x

s

Φ(τ, s)dτds,

provided the integral exists, we obtain

eγ(x) =e(x) +
1

Γ(γ)

(
T (1 + x−µ,−µi )

4

)γ ∫ x

−1

(∫ s

τ

K(x, s)ds

)
(x− τ)−µeγ(τ)dτ

(34)

+

∫ x

−1

K(x, s) (J4(s) + J6(s)) ds+ J1(x) + J2(x) + J3(x) + J4(x) + J5(x),

Denote D1 := {(x, s) : −1 ≤ s ≤ x, x ∈ [−1, 1]}. We have∣∣∣∣∫ s

τ

1

Γ(γ)
K(x, s)ds| ≤ 2

Γ(γ)
max

(x,s)∈D1

|K(x, s)

∣∣∣∣ ,M,

and then (34) gives

|eγ(x)| ≤ M

∫ x

−1

(x− τ)−µ|eγ(τ)|dτ + |e(x)|(35)
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+

∫ x

−1

K(x, s) (|J4(s)|+ |J6(s)|) ds

+ |J1(x)|+ |J2(x)|+ |J3(x)|+ |J4(x)|+ |J5(x)|.

It follows from the Gronwall inequality Lemma 3.4 that

(36) ‖ eγ(x) ‖L∞(I)≤ C
(
‖ e(x) ‖L∞(I) +

6∑
i=1

‖ Ji ‖L∞(I)

)
.

It follows from (33b) that

(37) ‖ e(x) ‖L∞(I)≤ C
(
‖ eγ(x) ‖L∞(I) +

∑
i=4,6

‖ Ji(x) ‖L∞(I)

)
.

Then

(38) ‖ eγ(x) ‖L∞(I)≤ C
6∑
i=1

‖ Ji ‖L∞(I),

(39) ‖ e(x) ‖L∞(I)≤ C
6∑
i=1

‖ Ji ‖L∞(I) .

Using Lemma 3.3, the estimates (28), and (37), we have

‖ J1 ‖L∞(I)(40)

≤

{
CN

1
2−µ max0≤i≤N |Ii,1|, 0 < µ < 1

2 ,

C logN max0≤i≤N |Ii,1|, 1
2 ≤ µ < 1,

≤



CN
1
2−µ−m maxx∈[−1,1] |K1(x, s(x, θ))|Hm,N

ω0,0(
‖ u ‖L2(I) + ‖ eγ(x) ‖L∞(I) +

∑
i=4,6 ‖ Ji(x) ‖L∞(I)

)
, 0 < µ < 1

2 ,

CN−m logN maxx∈[−1,1] |K1(x, s(x, θ))|Hm,N
ω0,0(

‖ u ‖L2(I) + ‖ eγ(x) ‖L∞(I) +
∑
i=4,6 ‖ Ji(x) ‖L∞(I)

)
, 1

2 ≤ µ < 1.

‖ J2 ‖L∞(I)(41)

≤

{
CN

1
2−µ max0≤i≤N |Ii,2|, 0 < µ < 1

2 ,

C logN max0≤i≤N |Ii,2|, 1
2 ≤ µ < 1,

≤



CN
1
2−µ−m maxx∈[−1,1] |K2(x, s(x, θ))|Hm,N

ω0,0(
‖ u ‖L2(I) + ‖ eγ(x) ‖L∞(I) +

∑
i=4,6 ‖ Ji(x) ‖L∞(I)

)
, 0 < µ < 1

2 ,

CN−m logN maxx∈[−1,1] |K2(x, s(x, θ))|Hm,N
ω0,0(

‖ u ‖L2(I) + ‖ eγ(x) ‖L∞(I) +
∑
i=4,6 ‖ Ji(x) ‖L∞(I)

)
, 1

2 ≤ µ < 1.
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Due to Lemma 3.2,

‖ J3 ‖L∞(I)≤

{
CN1−µ−m|Dγu|Hm,N

ωc
(I), 0 < µ < 1

2 ,

CN
1
2−m logN |Dγu|Hm,N

ωc
(I),

1
2 ≤ µ < 1,

(42)

‖ J4 ‖L∞(I)≤

{
CN1−µ−m|u|Hm,N

ωc
(I), 0 < µ < 1

2 ,

CN
1
2−m logN |u|Hm,N

ωc
(I),

1
2 ≤ µ < 1.

By virtue of Lemma 3.2(19b) with m = 1,

‖ J5 ‖L∞(I)(43)

≤

{
CN−µ ‖ e ‖L∞(I), 0 < µ < 1

2 ,

CN−
1
2 ‖ e ‖L∞(I),

1
2 ≤ µ < 1,

≤

{
CN−µ

(
‖ eγ ‖L∞(I) + ‖ J3 ‖L∞(I) + ‖ J5 ‖L∞(I)

)
, 0 < µ < 1

2 ,

CN−
1
2

(
‖ eγ ‖L∞(I) + ‖ J3 ‖L∞(I) + ‖ J5 ‖L∞(I)

)
, 1

2 ≤ µ < 1.

We now estimate the term J5(x). It follows from Lemma 3.5 and Lemma 3.6
with K(x, τ) = 1

Γ(γ) that

‖ J6 ‖L∞(I)= ‖ (I−µ,−µN − I)Meγ ‖L∞(I)(44)

= ‖ (I−µ,−µN − I)(Meγ − TNMeγ) ‖L∞(I)

≤
(
1+ ‖ I−µ,−µN ‖L∞(I)

)
CN−k ‖ Meγ ‖0,κ

≤

{
CN

1
2−µ−κ ‖ eγ ‖L∞(I), 0 < µ < 1

2 ,

CN−κ logN ‖ eγ ‖L∞(I),
1
2 ≤ µ < 1,

where in the last step we have used Lemma 3.6 under the following assumption{
1
2 − µ < κ < 1− µ, when 0 < µ < 1

2 ,

0 < κ < 1− µ, when 1
2 ≤ µ < 1,

provided that N is sufficiently large. Combining (40), (42), (43) and (44) gives

‖ Uγ(x)− uγ(x) ‖L∞(I)

≤

CN
1
2−µ−m

(
K∗‖u‖L2(I)+N

1
2(|Dγu|Hm,N

ωc
(I)+|u|Hm,N

ωc
(I))
)
, 0 < µ < 1

2 ,

CN−m logN
(
K∗‖u‖L2(I)+N

1
2(|Dγu|Hm,N

ωc
(I)+|u|Hm,N

ωc
(I))
)
, 1

2 ≤ µ < 1.

‖ U(x)− u(x) ‖L∞(I)

≤

CN
1
2−µ−m

(
K∗‖u‖L2(I)+N

1
2 (|Dγu|Hm,N

ωc
(I)+|u|Hm,N

ωc
(I))
)
, 0 < µ < 1

2 ,

CN−m logN
(
K∗‖u‖L2(I)+N

1
2 (|Dγu|Hm,N

ωc
(I)+|u|Hm,N

ωc
(I))
)
, 1

2 ≤ µ < 1.

Using γ = 1− µ, we have the desired estimate (23) and (24). �

Next, we will derive the error estimates in the function space L2
ω−µ,−µ(I).
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Theorem 4.2. If the hypotheses given in Theorem 4.1 hold, then

‖ Uγ(x)− uγ(x) ‖L2
ω−µ,−µ

(I)(45)

≤

CN
−m
(
V1 +Nγ− 1

2−κV2 +Nγ−κU
)
, 1

2 < γ < 1,

CN−m
(
V1 +N−κ logNV2 +N

1
2−κ logNU

)
, 0 < γ ≤ 1

2 ,

‖ U(x)− u(x) ‖L2
ω−µ,−µ

(I)(46)

≤

CN
−m
(
V1 +Nγ− 1

2−κV2 +Nγ−κU
)
, 1

2 < γ < 1,

CN−m
(
V1 +N−κ logNV2 +N

1
2−κ logNU

)
, 0 < γ ≤ 1

2 ,

for any κ ∈ (0, γ), provided that N is sufficiently large and C is a constant
independent of N , where

V1 = K∗
(
‖ u ‖L2(I) +|Dγu|H1,N

ωc
(I) + |u|H1,N

ωc
(I)

)
,

V2 = K∗ ‖ u ‖L2(I),

U = |Dγu|Hm,N
ωc

(I) + |u|Hm,N
ωc

(I).

Proof. By using the generalization of the Gronwall inequality Lemma 3.4 and
the Hardy inequality Lemma 3.8, it follows from (33) that

(47) ‖ eγ ‖L2
ω−µ,−µ

(I)≤ C
6∑
i=1

‖ Ji ‖L2
ω−µ,−µ

(I),

and

(48) ‖ e ‖L2
ω−µ,−µ

(I)≤ C
6∑
i=1

‖ Ji ‖L2
ω−µ,−µ

(I) .

Now, using Lemma 3.7, we have

‖ J1 ‖L2
ω−µ,−µ

(I)(49)

≤ C max
x∈[−1,1]

|Ii,1(x)|

≤ CN−m max
x∈[−1,1]

|K1(x, s(x, θ))|Hm,N
ω0,0 (I)

(
‖ u ‖L2(I) + ‖ e ‖L∞(I)

)
.

‖ J2 ‖L2
ω−µ,−µ

(I)(50)

≤ C max
x∈[−1,1]

|Ii,2(x)|

≤ CN−m max
x∈[−1,1]

|K2(x, ξ)|Hm,N
ω0,0 (I)

(
‖ u ‖L2(I) + ‖ e ‖L∞(I)

)
.

By the convergence result in Theorem 4.1 (m = 1), we have

‖ e ‖L∞(I)≤ C
(
|Dγu|H1,N

ωc
(I) + |u|H1,N

ωc
(I)+ ‖ u ‖L2(I)

)
.
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So that

(51)

2∑
i=1

‖ Ji ‖L2
ω−µ,−µ

(I)≤ CN−mK∗
(
|Dγu|H1,N

ωc
(I)+|u|H1,N

ωc
(I)+‖ u ‖L2(I)

)
.

Due to Lemma 3.2(19a),

‖ J3 ‖L3
ω−µ,−µ

(I)≤ CN−m|Dγu|Hm,N
ωc

(I),

‖ J4 ‖L4
ω−µ,−µ

(I)≤ CN−m|u|Hm,N
ωc

(I).
(52)

By virtue of Lemma 3.2(19a) with m = 1,

‖ J5 ‖L2
ω−µ,−µ

(I) ≤ CN−1

∣∣∣∣∫ x

−1

K(x, s)e(s)ds

∣∣∣∣
H1,N

ω−µ,−µ
(I)

≤ CN−1 ‖ e ‖L2
ω−µ,−µ

(I) .

(53)

Finally, it follows from Lemma 3.5 and Lemma 3.7 that

‖ J6 ‖L2
ω−µ,−µ

(I)(54)

= ‖ (I−µ,−µN − I)Meγ ‖L2
ω−µ,−µ

(I)

= ‖ (I−µ,−µN − I)(Meγ − TNeγ ‖L2
ω−µ,−µ

(I)

≤ ‖ I−µ,−µN (Meγ − TNeγ) ‖L2
ω−µ,−µ

(I) + ‖ Meγ − TNeγ ‖L2
ω−µ,−µ

(I)

≤ C ‖ Meγ − TNeγ ‖L∞(I)

≤ CN−κ ‖ Meγ ‖0,κ
≤ CN−κ ‖ eγ ‖L∞(I),

where, in the last step we used Lemma 3.6 for any κ ∈ (0, 1 − µ). By the
convergence result in Theorem 4.1, we obtain that

6∑
i=1

‖ Ji ‖L2
ω−µ,−µ

(I)≤

CN
1
2−µ−m−κ

(
K∗ ‖ u ‖L2(I) +N

1
2U
)
, 0 < µ < 1

2 ,

CN−m−κ logN
(
K∗ ‖ u ‖L2(I) +N

1
2U
)
, 1

2 ≤ µ < 1,

(55)

for N sufficiently large and for any κ ∈ (0, 1 − µ). The desired estimates
(45) and (46) are obtained by combining (47), (48), (51), (52), (53), (55) and
γ = 1− µ. �

5. Algorithm implementation and numerical results

Writing UN = (u0, u1, . . . , uN )T and UγN = (uγ0 , u
γ
1 , . . . , u

γ
N )T , we obtain the

following equations of the matrix form from (16):

UγN = (E +A+B)UN +GN ,

UN = U−1 + CUγN ,
(56)
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where
E is the identity matrix,

Aij =
1 + x−µ,−µi

2

N∑
k=0

K1(x−µ,−µi , s(x−µ,−µi , θk))Fj(s(x
−µ,−µ
i , θk))ω0,0

k ,

Bij =

N∑
k=0

K2(x−µ,−µi , θk)Fj(θk)ω0,0
k ,

Cij =
1

Γ(γ)

(
T (1 + x−µ,−µi )

4

)γ N∑
k=0

Fj(s(x
−µ,−µ
i , θ̃k))ω−µ,0k ,

GN = (g(x−µ,−µ0 ), g(x−µ,−µ1 ), . . . , g(x−µ,−µN ))T ,

U−1 = u(−1)× (1, 1, . . . , 1)T .

Example 1. Consider the following fractional integro-differential equation

D0.75y(t) =
6t2.25

Γ(3.25)
− t

4
+

1

5
− 1

5
t2ety(t)

+

∫ t

0

etτy(τ)dτ +

∫ 1

0

(t− ς)y(ς)dς,(57)

y(0) = 0.

The corresponding exact solution is given by y(t) = t3, D0.75y(t) = 6t2.25

Γ(3.25) .

Figure 1 presents the approximate and exact solutions on the left-hand side
and presents the approximate and exact derivatives on the right-hand side,
which are found in excellent agreement. In Figure 2, the numerical errors are
plotted for 2 ≤ N ≤ 20 in both L∞ and L2

ω−µ,−µ norms. As expected, an
exponential rate of convergence is observed for the problem, which confirmed
our theoretical predictions.

Example 2. Our last example is about a nonlinear problem in one-dimension.
Consider the following fractional integro-differential equation,

D0.5y(t) = f(t)y(t) + g(t) +
1

2
+
√
t

∫ t

0

y2(τ)dτ +

∫ 1

0

y(ς)dς,

y(0) = 0

(58)

with

f(t) = 2
√
t+ 2t

3
2 −

(√
t+ t

3
2

)
ln(1 + t), g(t) =

2arcsin h(
√
t)√

π(1 + t)
− 2t

3
2 .

The exact solution is y(t) = ln(1 + t).

This is a nonlinear problem. The numerical scheme (16) leads to a nonlinear
system for {ui}Ni=1, and a proper solver for the nonlinear system (e.g., Newton
method) should be used. The numerical results can be seen from Figure 3.
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Figure 1. Example 1: Comparison between approximate so-
lution and exact solution y(t) (left), approximate fraction de-
rivative and exact derivative D0.75y(t) (right)
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Figure 2. Example 1: The errors of numerical and exact so-
lution y(t) (left) and the errors of numerical and exact solution
D0.75y(t) (right) versus the number of collocation points in L∞

and L2
ω norms.

These results indicate that the spectral accuracy is obtained for this problem ,
although the given functions f(t) and g(t) are not very smooth.

Example 3. Consider the following fractional integro-differential equation

Dαy(t) = 2 + 2t− 2y(t) + t(1 + 2t)

∫ t

0

eτ(t−τ)y(τ)dτ

+

∫ 1

0

eς(t−ς)y(ς)dς,(59)

y(0) = 1

when α = 1, the exact solution of (59) is y(t) = et
2

.
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Figure 3. Example 2: Comparison between approximate so-
lution and exact solution of y(t) (left). The errors of numerical
and exact solution y(t) versus the number of collocation points
in L∞ and L2

ω norms (right).
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Figure 4. Example 3: Approximation solutions with different
α and exact solution of y(t) with α = 1 (left). Comparison
between approximate solution and exact solution of y′(t).

In the only case of α = 1, we know the exact solution. We have reported the
obtained numerical results for N = 20 and α = 0.25, 0.5, 0.75, 1 in Figure 4.
We can see that, as α approaches 1, the numerical solutions converges to the

analytical solution y(t) = et
2

, i.e., in the limit, the solution of fractional integro
differential equations approaches to that of the integer order integro differential
equations. In Figure 5, we plot the resulting errors versus the number N of the
steps. This figure shows the exponential rate of convergence predicted by the
proposed method.
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Figure 5. Example 3: The errors of numerical and exact so-
lution y(t)(left) and the errors of numerical and exact solution
y′(t) (right) versus the number of collocation points in L∞ and
L2
ω norms.
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