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A PREDICTOR-CORRECTOR METHOD FOR

FRACTIONAL EVOLUTION EQUATIONS

Hong Won Choi, Young Ju Choi, and Sang Kwon Chung

Abstract. Numerical solutions for the evolutionary space fractional or-
der differential equations are considered. A predictor corrector method
is applied in order to obtain numerical solutions for the equation without
solving nonlinear systems iteratively at every time step. Theoretical error
estimates are performed and computational results are given to show the
theoretical results.

1. Introduction

In this paper we discuss numerical approximate solutions for the fractional
differential evolution equation with a nonlinear forcing term. The equation is
described as

(1)
∂u(x, t)

∂t
= Dα

xu(x, t) + f(u, x, t), (x, t) ∈ Ω× (0, T ]

with an initial condition

(2) u(x, 0) = u0(x), x ∈ Ω̄

and Dirichlet boundary conditions

(3) u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ],

where ∂Ω is the boundary of the domain Ω and T is a positive real number
as a terminal time. And the differential operator Dα

x is the Riemann-Liouville
space fractional derivative of order α defined by

(4) Dα
xφ(x, t) =

1

Γ(n− α)

dn

dxn

∫ x

0

φ(ξ, t)

(x − ξ)α−n+1
dξ,

where n is an integer such that n− 1 < α < n and Γ(·) is the gamma function

(5) Γ(α) =

∫ ∞

0

e−xxα−1dx.
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Throughout this paper, we will assume that the nonlinear source term f(u, x, t)
is bounded and globally Lipschitz continuous with a Lipschitz constant L with
respect to u.

The fractional order diffusion equations have been discussed by many au-
thors as generalizations of classical diffusion equation in order to treat sub- and
super-diffusive processes. The values α of 0 < α < 1 and 1 < α < 2 model a
sub-diffusive and a super-diffusive process, respectively, in the spatial direction
and the model with α = 2 describes the classical dispersion. The equation
having these anomalous diffusion models in applications as fluid flow, finance,
seeds dispersion and other biological sciences[1, 6, 9, 10, 14].

The analytical results on existence and uniqueness of the solution for (1)
have been studied by Baeumer, Kovács and Meerschaert [2] using the semi-
group theory when the source term f(u, x, t) is globally Lipschitz continuous
with respect to u. They have also shown that the solution exists uniquely by
introducing the cut-off function when the function f(u, x, t) is locally Lipschitz
continuous. Moreover, they have shown that the solution is nonnegative when
the initial condition u0(x) is nonnegative.

When the problem (1) is linear, that is, f(u) = f(x, t), the finite difference
numerical approximation to the problem (1)–(3) with Riemann-Liouville frac-
tional derivative in one space dimension has been discussed by Meerschaert
and Tadjeran [14]. It is known in [13] that the standard (unshifted) Grünwald
formula is unstable regardless the finite difference scheme is either explicit
or implicit but the right-shifted Grünwald formula allows the implicit Euler
method is unconditionally stable. They used the Euler schemes with the shifted
Grünwald estimate to the fractional derivative and showed that the explicit
Euler scheme is conditionally stable. And they proved that the implicit Euler
scheme is unconditionally stable by using Gerschigorin’s circle theorem and
obtained error estimates of O(k + h). In order to obtain a second order of
accuracy O(k2 + h2), Tadjeran, Meerschaert and Scheffler [17] have applied
the Crank-Nicolson difference scheme and the shifted Grünwald approximation
with extrapolation technique.

For nonlinear problem of the type (1), numerical computations without any
theoretical discussions are carried out by Lynch, Carreras, del-Castillo-Negrete,
Ferreira-Mejias and Hicks [11] by using semi-implicit difference methods so
called the L2 method and the L2C method defined in [15] and numerical results
obtained by these methods are compared. Choi, Chung and Lee [4] have worked
on numerical solutions for the problem (1) with a forcing term of Kolmogorov-
Fisher type. They have studied existence, unconditional stability and error
estimates with order of convergence O(k + h) for the backward Euler method
in time and the shifted Grünwald estimate in space of the equation (1). But
they replaced the Riemann-Liouville fractional derivative Dα

xφ by the Caputo
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fractional derivative Dα
∗ φ defined as

Dα
∗ φ(x, t) =

1

Γ(n− α)

∫ x

0

φ(n)(ξ, t)

(x− ξ)α−n+1
dξ.

Choi and Chung [5] have studied finite element numerical solutions for the
space fractional diffusion equation with a nonlinear source term.

For a two-dimensional problem with fractional Riemann-Liouville derivative
when f(u) = f(x, y, t), Meerschaert, Scheffler and Tadjeran [12] used an im-
plicit Euler difference scheme with the Grünwald estimate for the fractional
derivative. They obtained consistency and convergence of order O(k + h) and
applied alternating-direction implicit (ADI) method for numerical computa-
tions. Finite element methods have been also applied to the fractional advec-
tion diffusion equations by Roop [16] and Ervin, Heuer and Roop [8] when
f(u) = f(x, y, t).

In Section 2, we apply a backward Euler scheme with the quadrature rule
so called L2 method for the fractional derivative term in (1). This leads us an
implicit finite difference scheme to the equation (1) with a nonlinear forcing
term in u and we have to solve nonlinear systems at each time step to compute
approximate solutions. This may be a time consuming job. In order to reduce
computing time of solving nonlinear systems at every time step, we use the
one-step predictor-corrector method. In Section 3, we discuss the consistency
and convergence of the predictor-corrector method, which gives error estimates
of O

(
(k + h3−α)(1 + k

hα )
)
. In Section 4, computational examples are carried

out to see convergence of the proposed scheme.

2. A predictor–corrector finite difference approximation

When we solve the equation (1) by using an implicit finite difference scheme
as in [4], we have to solve an almost fully nonlinear system of equations due to
the fractional derivative. It takes time when we use the generalized Newton’s
method to solve the system numerically, in general. In order to reduce the
computing time, we may use a predictor–corrector method for (1). A predictor-
corrector method has been applied to solve a fractional differential equation of
the Caputo type

Dα
∗ y(t) = f(t, y(t))

by Diethlem, Ford and Freed [7]. They adopted an equivalent Volterra integral
equation and the integral term was approximated by the trapezoidal quadrature
formula.

We consider first a well known initial value problem

(6) y′(t) = f(t, y(t)), y(0) = y0.

We assume that the function f to be so that the problem (6) has a unique
solution on some interval [0, T ]. For a finite difference numerical approximation
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scheme, define tn = nk with a temporal step size k. Then we may see that
inductively

(7) y(tn+1) = y(tn) +

∫ tn+1

tn

f(s, y(s))ds.

If we approximate the integral term by the trapezoidal quadrature formula
∫ b

a

g(s)ds ≈
b− a

2
(g(a) + g(b)),

then the equation(7) becomes

y(tn+1) = y(tn) +
k

2

{
f(tn, y(tn)) + f(tn+1, y(tn+1))

}
.

Hence we obtain the implicit one-step Adams-Bashford-Moulton method by
replacing y(tn) and y(tn+1) by their approximations yn and yn+1, respectively,

(8) yn+1 = yn +
k

2
{f(tn, yn) + f(tn+1, yn+1)}.

But it is impossible to solve yn+1 directly because the equation (8) is nonlinear
due to the nonlinearity of f(t, y(t)). Therefore we may have to replace yn+1 by
a known approximate value in order to compute explicitly.

We introduce the predictor yPn+1 for yn+1 in a similar way replacing the
trapezoidal quadrature formula by the rectangular rule

∫ b

a

g(s)ds ≈ (b− a)g(a).

This gives an explicit Euler method

(9) yPn+1 = yn + kf(tn, yn).

Hence we get the one-step method

(10) yn+1 = yn +
k

2
{f(tn, yn) + f(tn+1, y

P
n+1)},

which is known to be convergent of order 2. That is, if y is sufficiently smooth,
then

max
0≤i≤N

|y(ti)− yi| = O(k2).

Let h be the grid size in the spatial direction with h = 1/N and xi = ih for
i = 0, 1, 2, . . . , N . We now use the central difference approximate scheme for
φxx(x, t) and apply the rectangular quadrature rule which is called L2 method
as in [15]. Since for 1 < α < 2,

Dα
xφ(xi, t) =

φ(0, t)

Γ(1− α)
x−α
i +

φx(0, t)

Γ(2 − α)
x−α
i +

1

Γ(2− α)

∫ xi

0

φxx(y, t)

(xi − y)α−1
dy,

it may have singular terms at the left boundary. If we assume that the left
boundary conditions are given as

φ(0, t) = 0 = φx(0, t), t ≥ 0,
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we obtain

Dα
xφ(xi, t) =

1

Γ(2− α)

∫ xi

0

φxx(y, t)

(xi − y)α−1
dy

=
1

Γ(2− α)

i−1∑

j=0

∫ xj+1

xj

φxx(xi − y, t)

yα−1
dy.

In this case the Riemann-Liouville fractional derivative Dα
xφ(xi, t) becomes the

Caputo fractional derivative Dα
∗ φ(xi, t). Then the problem (1) becomes

(11)
∂u(x, t)

∂t
= Dα

∗ u(x, t) + f(u(x, t)), (x, t) ∈ Ω× (0, T ].

We now introduce ∇α
∗φ(xi, t) as an approximation to Dα

∗ φ(xi, t), which is de-
fined as

∇α
∗φ(xi, t)

=
1

Γ(2− α)

i−1∑

j=0

φ(xi − xj−1)− 2φ(xi − xj) + φ(xi − xj+1)

h2

∫ xj+1

xj

dy

yα−1

=
1

Γ(3− α)hα

i−1∑

j=0

[(j + 1)2−α − j2−α]

× [φ(xi − xj−1)− 2φ(xi − xj) + φ(xi − xj+1)]

=

i∑

j=−1

wj(α)φi−j ,

where the weights wj(α) are

w−1(α) =
1

Γ(3− α)hα
, w0(α) =

22−α − 3

Γ(3− α)hα
,

wj(α) =
(j + 2)2−α − 3(j + 1)2−α + 3j2−α − (j − 1)2−α

Γ(3 − α)hα
, 1 ≤ j ≤ i− 2,

wi−1(α) =
−2i2−α + 3(i− 1)2−α − (i− 2)2−α

Γ(3− α)hα
,

wi(α) =
i2−α − (i − 1)2−α

Γ(3− α)hα
.

In this case, the discretization error is O(h3−α). If we define a super diagonal
matrix W as

W =




w0 w−1 0 0 · · · 0
w1 w0 w−1 0 · · · 0
· · · · · · · ·

wi−1 · · · · · · w−1

wi wi−1 wi−2 · · · w1 w0



.
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Then we obtain the following lemma by simple calculation.

Lemma 2.1. The sum of absolute values of entries of the matrix W is bounded.

In fact,
i∑

j=−1

|wj(α)| ≤
6− 2 · 22−α

Γ(3 − α)hα
, 0 ≤ i ≤ N.

It follows from Lemma 2.1 that the matrix W is bounded.

Corollary 2.1. Let ‖W‖∞ = supx 6=0
‖Wx‖∞

‖x‖∞

. Then there is a constant C such

that ‖W‖∞ ≤ C.

Remark 2.1. Instead of using L2 approximation to the fractional derivative of
Caputo type, we may use the right-shifted Grünwald formula defined as, for
1 < α < 2,

∇α
∗φ(xi, t

n) =
1

hα

i+1∑

m=0

gm(α)φn
i−m+1,

where

gm(α) =
Γ(m− α)

Γ(−α)Γ(m+ 1)
= (−1)m

(
α

m

)
= (−1)m

α(α− 1) · · · (α−m+ 1)

m!
.

In this case, it is clear that Lemma 2.1 holds in much simpler form. That is,
for the matrix derived W from the right-shifted Grünwald estimates

i∑

j=−1

|wj(α)| ≤
2α

hα
.

Since the right-shifted Grünwald formula produces a local truncation error of
O(h), the authors in [17] applied an extrapolation technique in order to obtain
a second order O(h2).

For numerical solutions of (11), we first adopt the method of lines such as

(12)
∂u(xi, t)

∂t
= Dα

∗ u(xi, t) + f(u(xi, t)), t ∈ (0, T ].

We now apply the one-step predictor-corrector method to (12). Then we obtain
a system of equations

(13) UP (xi, tn+1) = U(xi, tn) + k{∇α
∗U(xi, tn) + f(U(xi, tn))},

U(xi, tn+1) = U(xi, tn) +
k

2
{∇α

∗U(xi, tn) + f(U(xi, tn))

+∇α
∗U

P (xi, tn+1) + f(UP (xi, tn+1))}.
(14)

Then the predictor-corrector method (13)–(14) can be rewritten by a matrix
form as

(15) Un+1,P = (I + kW )Un + kf(Un),
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(16) Un+1 = (I +
k

2
W )Un +

k

2
WUn+1,P +

k

2
{f(Un) + f(Un+1,P )}.

3. Convergence of the predictor-corrector method

The finite difference method (15)–(16) defined above has a local truncation
error of O(k2+h3−α), since the approximation of the fractional derivative term
by the L2 method is locally of O(h3−α) and that of the predictor-corrector
method is of O(k2). It is clear that the method is consistent.

In order to show stability and convergence of approximate solutions for (11),
we use the mathematical induction. Let u(xi, tn) be the exact solution of (11)
and U(xi, tn) be the solution of (13)–(14). For the error estimates, we define
the maximum errors as

‖en,P ‖∞ = max
0≤i≤N

|u(xi, tn)− UP (xi, tn)|

and
‖en‖∞ = max

0≤i≤N
|u(xi, tn)− U(xi, tn)|.

Before we show that the numerical scheme (13)–(14) is stable, we introduce
the discrete Gronwall’s inequality which will be used judiciously [3].

Lemma 3.1 (Gronwall’s inequality). Assume that G(n), a(n), and w(n) are

three sequences of real nonnegative numbers such that

G(n) ≤ a(n) +
n−1∑

i=0

w(i)G(i), n = 1, 2, . . . .

Furthermore, assume that a(n) is nondecreasing. Then

G(n) ≤ a(n) exp

( n−1∑

i=0

w(i)

)
.

Theorem 3.1. Let U(xi, tn) be the solution of (13)–(14). Then there is a

positive constant C such that

‖Un‖∞ ≤ C(α, T, ‖u‖∞).

Proof. Substituting (15) into (16), we obtain

(17) Un+1 = (
k2

2
W 2 + kW + I)Un +

k

2
(I + kW )f(Un) +

k

2
f(Un+1,P ).

It follows from (17) that, summing from n = 0 to n,

Un+1=U0+k(
k

2
W 2+W )

n∑

m=0

Um+
k

2
(kW +I)

n∑

m=0

f(Um)+
k

2

n∑

m=0

f(Um+1,P ).

Applying Corollary 2.1 and boundedness of f by M , we obtain

‖Un+1‖∞ ≤ ‖U0‖∞ + k(
k

2
‖W‖2∞ + ‖W‖∞)

n∑

m=1

‖Um‖∞ + TM.
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An application of the discrete Gronwall’s inequality completes the proof. �

Then we obtain the following error estimates for the case n = 1.

Lemma 3.2. There is a positive constant C such that

‖e1,P‖∞ ≤ C(k2 + kh3−α).

Proof. It follows from (1.1) and (13) that, for each i,

u(xi, t1)− UP (xi, t1)

= u(xi, t0)− U(xi, t0) +

∫ t1

0

{Dα
∗u(xi, s)−∇α

∗U(xi, t0)}ds

+

∫ t1

0

{f(u(xi, s))− f(U(xi, t0))}ds.

Since U(xi, t0) = u(xi, t0), we obtain

|u(xi, t1)− UP (xi, t1)|

≤

∫ t1

0

‖Dα
∗ ut(xi, ·)‖∞|s− t0|ds

+

∫ t1

0

|Dα
∗ u(xi, t0)−∇α

∗u(xi, t0)|ds

+

∫ t1

0

|∇α
∗u(xi, t0)−∇α

∗U(xi, t0)|ds

+ L

∫ t1

0

{
|u(xi, s)− u(xi, t0)|+ |u(xi, t0)− U(xi, t0)|

}
ds

≤
k2

2
(‖Dα

∗ ut(xi, ·)‖∞ + L‖ut(xi, ·)‖∞) + kh3−α.

This completes the proof. �

Lemma 3.3. There is a positive constant Csuch that

‖e1‖∞ ≤ C(k2 + kh3−α)
(
1 +

k

hα

)
.

Proof. It follows from again (1), (13) and (14) that

u(xi, t1)− U(xi, t1)

= u(xi, t0) +

∫ t1

0

{Dα
∗ u(xi, s) + f(u(xi, s))}ds

−

{
U(xi, t0) +

k

2

{
∇α

∗U(xi, t0) + f(U(xi, t0))

+∇α
∗U

P (xi, t1) + f(UP (xi, t1))
}}

= u(xi, t0)− U(xi, t0)
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+
1

2

∫ t1

0

{
Dα

∗ u(xi, s)−∇α
∗U(xi, t0) + f(u(xi, s))− f(U(xi, t0))

}
ds

+
1

2

∫ t1

0

{
Dα

∗ u(xi, s)−∇α
∗U

P (xi, t1) + f(u(xi, s))− f(UP (xi, t1))
}
ds.

Since u(xi, t0) = U(xi, t0), it follows from the proof of Lemma 3.2 that

|u(xi, t1)− U(xi, t1)|

≤
1

2
|u(xi, t1)− UP (xi, t1)|

+
1

2

∫ t1

0

{
|Dα

∗ u(xi, s)−∇α
∗U

P (xi, t1)|+ |f(u(xi, s))− f(UP (xi, s))|
}
ds

≤
1

2
|u(xi, t1)− UP (xi, t1)|

+
1

2

∫ t1

0

{
|Dα

∗ u(xi, s)−Dα
∗ u(xi, t1) +Dα

∗ u(xi, t1)−∇α
∗u(xi, t1)

+∇α
∗u(xi, t1)−∇α

∗U
P (xi, t1)|

}
ds

+
1

2

∫ t1

0

|f(u(xi, s))− f(u(xi, t1)) + f(u(xi, t1))− f(UP (xi, t1))|ds

≤
1

2
|u(xi, t1)− UP (xi, t1)|+

1

2

∫ t1

0

|Dα
∗ ut(xi, ξ)(s− t1)|ds

+
1

2

∫ t1

0

{
|Dα

∗ u(xi, t1)−∇α
∗u(xi, t1)|+ |∇α

∗u(xi, t1)−∇α
∗U

P (xi, t1)|
}
ds

+
1

2

∫ t1

0

L|ut(xi, η)(s− t1)|ds+
1

2

∫ t1

0

L|u(xi, t1)− UP (xi, t1)|ds

≤
1

2
|u(xi, t1)− UP (xi, t1)|+

k2

4
‖Dα

∗ ut(xi, ·)‖∞

+
k

2
|Dα

∗ u(xi, t1)−∇α
∗u(xi, t1)|+

k

2
|∇α

∗u(xi, t1)−∇α
∗U

P (xi, t1)|

+
k2

4
L‖ut(xi, ·)‖∞ +

k

2
L|u(xi, t1)− UP (xi, t1)|.

It follows from Lemma 3.2 that

|u(xi, t1)− U(xi, t1)|

≤
1

2
(1 + kL)|u(xi, t1)− UP (xi, t1)|

+
k2

4

{
‖Dα

∗ ut(xi, ·)‖∞ + L‖ut(xi, ·)‖∞
}

+
k

2

{
|Dα

∗ u(xi, t1)−∇α
∗u(xi, t1)|+ |∇α

∗u(xi, t1)−∇α
∗U

P (xi, t1)|
}
.
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Furthermore, since for some positive generic constant C

|Dα
∗ u(xi, t1)−∇α

∗u(xi, t1)| ≤ Ch3−α

and

|∇α
∗u(xi, t1)−∇α

∗U
P (xi, t1)| ≤

C

hα
‖e1,P‖∞,

there is a generic positive constant C such that

|u(xi, t1)− U(xi, t1)| ≤ C(k2 + kh3−α)
(
1 +

k

hα

)
.

This completes the proof. �

In order to use the mathematical induction, we assume that Lemmas 3.2–
3.3 hold for tn. Then we may obtain error estimates of the predictor-corrector
method at tn+1.

Lemma 3.4. There is a positive constant C such that

‖en+1,P‖∞ ≤ C(k2 + kh3−α)
(
1 +

k

hα

)
.

Proof. It follows from (1) and (13) that

u(xi, tn+1) = u(xi, tn) +

∫ tn+1

tn

{Dα
∗ u(xi, s) + f(u(xi, s))}ds

and

UP (xi, tn+1) = U(xi, tn) + k{∇α
∗U(xi, tn) + f(U(xi, tn))}.

Following the proof of Lemma 3.2, we obtain

|u(xi, tn+1)− UP (xi, tn+1)|

≤ |u(xi, tn)− U(xi, tn)|+

∫ tn+1

tn

|Dα
∗ u(xi, s)−∇α

∗U(xi, tn)|ds

+

∫ tn+1

tn

L|u(xi, s)− U(xi, tn)|ds

≤ (1 + kL)|u(xi, tn)− U(xi, tn)|

+
k2

2

{
‖Dα

∗ ut(xi, ·)‖∞ + ‖ut(xi, ·)‖∞
}

+ k
{
|Dα

∗ u(xi, tn)−∇α
∗u(xi, tn)|+ |∇α

∗u(xi, tn)−∇α
∗U(xi, tn)|

}

≤ C(1 + kL+
k

hα
)|u(xi, tn)− U(xi, tn)|+ C(kh3−α + k2).

This completes the proof. �

Theorem 3.2. There is a positive constant C such that

‖en+1‖∞ ≤ C(k + h3−α)
(
1 +

k

hα

)
.
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Proof. It follows from (1) and (14) that

u(xi, tn+1)− U(xi, tn+1)

= u(xi, tn)− U(xi, tn)

+
1

2

∫ tn+1

tn

{
Dα

∗ u(xi, s)−∇α
∗U(xi, tn)+f(u(xi, s))−f(U(xi, tn))

}
ds

+
1

2

∫ tn+1

tn

{
Dα

∗ u(xi, s)−∇α
∗U

P (xi, tn+1)+f(u(xi, s))−f(UP (xi, tn+1))
}
ds.

Thus, following the idea of proof in Lemma 3.3, we obtain

|u(xi, tn+1)− U(xi, tn+1)|

≤ |u(xi, tn)− U(xi, tn)|+
k2

2
{‖Dα

∗ ut(xi, ·)‖∞ + L‖ut(xi, ·)‖∞}

+
kL

2
|u(xi, tn)− U(xi, tn)|+

kL

2
|u(xi, tn+1)− UP (xi, tn+1)|

+
1

2

∫ tn+1

tn

{|Dα
∗ u(xi, tn)−∇α

∗u(xi, tn)|+ |∇α
∗u(xi, tn)−∇α

∗U(xi, tn)|}ds

+
1

2

∫ tn+1

tn

{
|Dα

∗ u(xi, tn+1)−∇α
∗u(xi, tn+1)|

+ |∇α
∗u(xi, tn+1)−∇α

∗U
P (xi, tn+1)|

}
ds

≤ (1 +
kL

2
)|u(xi, tn)− U(xi, tn)|+

k2

2
{‖Dα

∗ ut(xi, ·)‖∞ + L‖ut(xi, ·)‖∞}

+
kL

2
|u(xi, tn)− UP (xi, tn)|

+
k

2
{|Dα

∗ u(xi, tn)−∇α
∗u(xi, tn)|+ |∇α

∗u(xi, tn)−∇α
∗U(xi, tn)|}

+
k

2
{|Dα

∗ u(xi, tn+1)−∇α
∗u(xi, tn+1)|+ |∇α

∗u(xi, tn+1)−∇α
∗U

P (xi, tn+1)|}

≤ (1 +
kL

2
)‖en‖∞ +

k2

2
{‖Dα

∗ut(xi, ·)‖∞ + L‖ut(xi, ·)‖∞}

+
kL

2
‖en,P ‖∞ +

k

2
(Ch3−α +

C

hα
‖en‖∞) +

k

2
(Ch3−α +

C

hα
‖en+1,P‖∞).

It follows from Lemma 3.4 that we obtain, summing from n = 0 to n,

‖en+1‖∞ ≤ ‖e0‖∞ +
k2

2

n∑

m=0

{
‖Dα

∗ ut(xi, ·)‖∞ + L‖ut(xi, ·)‖∞
}

+ Ck

n∑

m=0

{h3−α + ‖em,P‖∞}+ Ck‖en+1,P‖∞ + Ck

n∑

m=0

‖em‖∞.
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Now we apply Gronwall’s inequality. Then we obtain

‖en+1‖∞ ≤ C(k + h3−α)
(
1 +

k

hα

)
.

This completes the proof. �

4. Numerical experiments

In order to see the implementation of the previous theoretical results, we
consider two examples.

Example 4.1. We first consider a space fractional linear diffusion equation

∂u(x, t)

∂t
= Dα

∗ u(x, t) +
2t

t2 + 1
u(x, t)

− 2(t2 + 1)

(
x2−α

Γ(3− α)
−

6x3−α

Γ(4− α)
+

12x4−α

Γ(5− α)

)(18)

with an initial condition

u(x, 0) = x2(1− x)2, x ∈ [0, 1](19)

and boundary conditions

u(0, t) = u(1, t) = 0.(20)

When the diffusion coefficient α = 1.8, the exact solution of the equation is
known as

u(x, t) = (t2 + 1)x2(1− x)2.

Table 1 shows the order of convergence and the maximum error between the
exact solution and the approximate solution obtained by predictor-corrector
method for (18)–(20) when α = 1.8. For numerical computation, the temporal
step size k = 0.001 is used. As seen in Table 1, order of convergence is close to
3− α but it decreases as h becomes smaller.

Table 1. Maximum error and orders of convergence.

‖u− uh‖∞
h Error Order
1/4 2.00466e-02 -
1/8 7.20539e-03 1.476
1/16 2.93931e-03 1.294
1/32 1.29116e-03 1.187

According to Table 1, we may find that the order of convergence is close to
O(h3−α) for this linear fractional diffusion problem (18)–(20) when α = 1.8.
But the order of convergence slightly decreases as h becomes smaller. This
implies that numerical computations confirm the theoretical results.
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We plot the exact solution and approximate solution obtained by the predic-
tor-corrector method (2.10)–(2.11) using h = 1/32 and k = 1/1000 for (18)–
(20) with α = 1.8. Figure 1 shows the contour plots of an exact solution and
numerical solution at t = 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

u(
x,

1)

 

 

Approximate Solution

Exact Solution

Figure 1. Exact and numerical solutions with α = 1.8.

Example 4.2. We consider a space fractional diffusion equation with a non-
linear Fisher type source term which is described as

∂u(x, t)

∂t
= καD

α
∗ u(x, t) + λu(x, t)(1 − βu(x, t))(21)

with an initial condition
u(x, 0) = u0(x)

and boundary conditions

(22) u(0, t) = u(10, t) = 0.

In fact, we will consider the case of κα = 0.1, λ = 0.25, β = 1 in (21) with an
initial condition

u0(x) =

{
e−10(x−5), x ≥ 5,

e10(x−5), x < 5.
(23)

Choi and Chung [5] have obtained computational solutions for (21) with
initial conditions

u0(x) =

{
e−10x, x ≥ 0,
e10x, x < 0.

using a Galerkin finite element method. We obtain computational results using
the method as in Example 4.1. Figure 2 shows contour plots of numerical
solutions at t = 1 for (21)–(23). In case, step sizes h = 0.05 and k = 0.002 are
used for numerical computation. From the numerical results, we may find that
numerical solutions converge to the solution of classical diffusion equation as α
approaches to 2.
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Figure 2. Numerical solutions for (21) with (23) with α.

5. Concluding remarks

Since the fractional derivative is defined as an weakly singular integral form,
we have to solve an almost fully nonlinear system of equations at each time step
when we apply an implicit finite difference method to the fractional evolution
equations. It may need lot of computing time to do that. We have considered
the one-step predictor-corrector method in order to avoid solving nonlinear
systems. We discussed order of convergence for the predictor-corrector method
and obtained order of O

(
(k + h3−α)(1 + k

hα )
)
. This may give computational

limitation for large α close to 2. Computational implementations are performed
to a linear problem as well as a nonlinear problem. We see that computational
results follow the theoretical ones.

Acknowledgement. The authors would like to express sincere thanks to the
referee for valuable comments.

References

[1] K. Adolfsson, M. Enelund, and S. Larsson, Adaptive discretization of fractional order

viscoelasticity using sparse time history, Comput. Methods Appl. Mech. Engrg. 193

(2004), no. 42-44, 4567–4590.
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