• Title/Summary/Keyword: Fractional factorial design

Search Result 138, Processing Time 0.029 seconds

$p^{n-m}$ fractional Factorial Design Excluded SOme Debarred Combinations

  • Choi, Byoung-Chul;Kim, Hyuk-Joo
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.3
    • /
    • pp.759-766
    • /
    • 2000
  • In order to design fractional factorial experiments which include some debarred combinations, we should select defining contrasts so that those combinations are to be excluded. Choi(1999) presented a method of selectign defining contrasts to construct orthogonal 3-level fractional factorial experiments which exclude some debarred combinations. In this paper, we extend Choi's method to general p-level fractional factorial experiments to select defining contrasts which cold exclude some debarred combinations.

  • PDF

A Study on Developing Fold-Over Designs with Four-Level Quantitative Factors (4-수준 계량인자가 포함된 반사계획에 관한 연구)

  • Choi, Kiew-Phil;Byun, Jai-Hyun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.3
    • /
    • pp.283-290
    • /
    • 2002
  • Two-level fractional factorial designs are widely used when many factors are considered. When two-level fractional factorial designs are used, some effects are confounded with each other. To break the confounding between effects, we can use fractional factorial designs, called fold-over designs, in which certain signs in the design generators are switched. In this paper, optimal fold-over designs with four-level quantitative and two-level factors are presented for (1) the initial designs without curvature effect and (2) those with curvature effect. Optimal fold-over design tables are provided for 8-run, 16-run, and 32-run experiments.

Analysis on Application Plan of Factorial Design in Relation to Responses for Electronically-controlled Diesel Engine (전자제어식 디젤엔진에 있어서 반응치에 따른 요인배치법의 활용 방안에 대한 분석)

  • Lee, Jung-Gyu;Kim, Min-Jong;Koh, Sung-Wi;Yang, Ju-Ho;Han, Kyu-Il;Koh, Dae-Kwon;Jung, Suk-Ho
    • Journal of Power System Engineering
    • /
    • v.22 no.1
    • /
    • pp.5-10
    • /
    • 2018
  • In order to employ factorial design on electronically-controlled diesel engine, effects of 5 factors on specific fuel consumption, nitrogen oxides and carbon monoxide were examined by fractional and full factorial design in this research. There were different results between fractional and full factorial design, then effect of variables as ambient condition and measurement of fuel consumption were confirmed. It was shown that ambient condition affected uniformly trend of nitrogen oxides and carbon monoxide. However, both ambient condition and measurement of fuel consumption had nothing to do with trend of specific fuel consumption and therefore it must be careful to employ factorial design on specific fuel consumption as response.

A Study on the Determination of Experimental Size of Near-orthogonal Two-level Balanced Trace Optimal Resolution-V Fractional Factorial Designs (직교성에 가까운 트레이스 최적 2-수준 Resolution-V 균형 일부실험법의 실험크기 결정에 관한 연구)

  • Kim, Sang Ik
    • Journal of Korean Society for Quality Management
    • /
    • v.45 no.4
    • /
    • pp.889-902
    • /
    • 2017
  • Purpose: The orthogonality and trace optimal properties are desirable for constructing designs of experiments. This article focuses on the determination of the sizes of experiments for the balanced trace optimal resolution-V fractional factorial designs for 2-level factorial designs, which have near-orthogonal properties. Methods: In this paper, first we introduce the trace optimal $2^t$ fractional factorial designs for $4{\leq}t{\leq}7$, by exploiting the partially balanced array for various cases of experimental sizes. Moreover some orthogonality criteria are also suggested with which the degree of the orthogonality of the designs can be evaluated. And we appraise the orthogonal properties of the introduced designs from various aspects. Results: We evaluate the orthogonal properties for the various experimental sizes of the balanced trace optimal resolution-V fractional factorial designs of the 2-level factorials in which each factor has two levels. And the near-orthogonal 2-level balanced trace optimal resolution-V fractional factorial designs are suggested, which have adequate sizes of experiments. Conclusion: We can construct the trace optimal $2^t$ fractional factorial designs for $4{\leq}t{\leq}7$ by exploiting the results suggested in this paper, which have near-orthogonal property and appropriate experimental sizes. The suggested designs can be employed usefully especially when we intend to analyze both the main effects and two factor interactions of the 2-level factorial experiments.

$3^{n-p}$ Fractional Factorial Desig Excluded A Debarred Combination (실험불가능한 처리조합이 배제되는 $3^{n-p}$ 일부실시법)

  • 최병철;최승현
    • The Korean Journal of Applied Statistics
    • /
    • v.11 no.2
    • /
    • pp.303-315
    • /
    • 1998
  • In a factorial experiment, certain combinations of factor levels clay not be ruled out for operational or economical reason. A fractional factorial design that contains such infeasible combinations, called debarred combinations, becomes too unbalanced to estimate the required effects. This thesis presents a method of selecting defining contrasts for constructing regular $3^{n-p}$ fractional factorial design which does not contain a debarred combination. Consequently, the construction of the design is accomplished by choosing the defining contrasts so that one of defining contrasts is compatible with a debarred combination.

  • PDF

Noise Reduction of Muffler by Optimal Design

  • Oh, Jae-Eung;Cha, Kyung-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.9
    • /
    • pp.947-955
    • /
    • 2000
  • This paper proposes an optimal design scheme to improve the muffler's capacity of noise reduction of the exhaust system by combining the Taguchi method and a fractional factorial design. As a measuring tool for the performance of a muffler, the performance prediction software which is developed by Oh, Lee and Lee (1996) is used. In the first stage of a design, the length and radius of each component of the current muffler system are selected as control factors. Then, the $L_{18}$ table of orthogonal arrays is adopted to extract the effective main factors. In the second stage, the fractional factorial design is adopted to take interactions into consideration, which the $L_{18}$ table of orthogonal arrays can not consider. For an optimal design, the $L_{27}$ table of orthogonal arrays with main and interaction effects is proposed and the noise factors such as temperature, background noise and humidity are analyzed for more efficient design simultaneously.

  • PDF

3n-p Fractional Factorial Design Excluded Some Debarred Combinations

  • Park, Byoung -Chul
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.3
    • /
    • pp.695-706
    • /
    • 1999
  • When fractional factorial experiments contain some infeasible treatment combinations called debarred combinations we should construct experimental designs so that those debarred combinations are to be excluded by selecting defining contrasts appropriately. By applying Franklin(1995)'s procedure for selecting defining contrasts to Cheng and Li(1993)'s method this paper presents a method of selecting defining contrasts to construct orthogonal 3-level fractional factorial experiments which exclude some debarred combinations.

  • PDF

Design of Muffler using Taguchi Method and Experimental Design (다구찌 방법과 실험계획법을 이용한 소음기의 설계 방법)

  • 오재응;차경준;이규태;진정언
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.121-129
    • /
    • 1999
  • Recently, the regulations from the govemment and the concems of the people give rise to the interest in exhaust noise of passenger car as much as other vehicles. The exact analysis of various mufflers is needed to reduce the level of exhaust noise. In this paper, we propose a design to improve the mufflers capacity by reducing noise of exhaust system combining Taguchi method and fractional factorial design. In order to measure the performance of a muffler, the performance prediction software which is developed by the Dept. of Automotive Engineering at Hanyang University is used. From the current muffler system we select control factors such as lenght and radius of each component that are thought to be effective on capacity of muffler. Factors are arranged using L18, L27 table of orthogonal array and the fractional factorial design for analysis. We find some significant interaction effects using 1/3 fractional factorial design and accomplish the reduction of noise from the muffler.

  • PDF

A New Approach for Selecting Fractional Factorial Designs

  • Park, Dong-Kwon;Kim, Hyoung-Soon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.3
    • /
    • pp.707-714
    • /
    • 2003
  • Because of complex aliasing, nonregular designs have traditionally been used for screening only main effects. However, complex aliasing actually may allow some interactions entertained and estimated without making additional runs. According to hierarchical principle, the minimum aberration has been used as an important criterion for selecting regular fractional factorial designs. The criterion is not applicable to nonregular designs. In this paper, we give a criterion for choosing fractional factorial designs based on the fan theory. The criterion is focused on the partial ordering given by set inclusion on estimable sets which is called leaves.

  • PDF

Minimum Aberration $3^{n-k}$ Designs

  • Park, Dong-Kwon
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.2
    • /
    • pp.277-288
    • /
    • 1996
  • The minimum aberration criterion is commonly used for selecting good fractional factorial designs. In this paper we give same necessary conditions for $3^{n-k}$ fractional factorial designs. We obtain minimum aberration $3^{n-k}$ designs for k = 2 and any n. For k > 2, minimum aberration designs have not found yet. As an alternative, we select a design with minimum aberration among minimum-variance designs.

  • PDF