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Abstract

                                        

Because of complex aliasing, nonregular designs have traditionally been 
used for screening only main effects. However, complex aliasing actually 
may allow some interactions entertained and estimated without making 
additional runs. According to hierarchical principle, the minimum aberration 
has been used as an important criterion for selecting regular fractional 
factorial designs. The criterion is not applicable to nonregular designs. In 
this paper, we give a criterion for choosing fractional factorial designs 
based on the fan theory. The criterion is focused on the partial ordering 
given by set inclusion on estimable sets which is called leaves.
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1. Introduction

Factorial experiments are conducted for simultaneously investigating a number 

of factors. If total runs consist of all possible combinations of the levels of the 

different factors, the experiment is called a complete factorial experiment. Often 

the run size may be too large to carry out a complete factorial experiment 

because of expensive cost and time limitation. For these reasons, we need to 

choose a fraction of the possible factorial combinations, which is called a fractional 

factorial (FF, for short) design.

Our primary concern is how to choose a good FF design from a complete 

factorial experiment. When we perform only a fraction of the complete factorial 
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experiment, some factorial effects are aliased with some other factorial effects. 

Most of the background theory of designs is related with regular FF designs. 

For regular designs, any two factorial effects can either be estimated 

independently of each other or fully aliased. A regular design is uniquely 

determined by independent defining words. Designs that do not possess this 

property are called nonregular designs, which include many mixed-level orthogonal 

arrays. 

According to hierarchical principle, the minimum aberration (MA, for short) (see 

Fries and Hunter (1980) or Wu and Zhang (1993)) has been used as an important 

criterion for selecting regular FF designs. According to the MA criterion, to 

choose optimal FF designs we just sequentially minimize the wordlength. This 

criterion is basically same with sequentially minimizing the numbers of alias 

relations between factorial effects (Zhang and Park (2000)).  

For reasons of run size economy or flexibility, nonregular designs may be used. 

For nonregular designs, some factorial effects may neither be uncorrelated nor 

fully aliased, that is, they have an absolute correlation strictly between 0 and 1. In 

these designs, the aliasing of effects may have a complex pattern, and are 

therefore referred to as designs with complex aliasing. Because of complex 

aliasing, nonregular designs have traditionally been used for screening only main 

effects. However, complex aliasing actually may allow some interactions 

entertained and estimated without making additional runs(see, for example, Wang 

and Wu (1995) for Plackett-Burman design). For nonregular designs, MA criterion 

cannot be applied. This motivates us to propose criteria for selecting FF designs.

In this paper, we propose a new approach for choosing FF designs based on the 

fan theory. The criterion is based on the partial ordering given by set inclusion on 

estimable sets which is called leaves. 

2. Maximal Fan Design  

In any particular problem we expect to find a design giving maximal estimable 

models(leaves in terms of fan theory). A maximal fan design is one for which 

every possible leaf can be estimated. It is based on the theory of aliasing to the 

study the fan of designs which is full range of estimable polynomial models for a 

particular design. Optimal fractions are chosen according to the number of leaves. 

Obviously, a maximal fan design, if exists, is the best with respect to estimability.

Consider for an example the 2 3- 1  regular fractional factorial design d 1  in three 

factors, x 1,x 2  and x 3 , with defining relation I= x 1x 2x 3  consisting of the four 

points ( n=4 ) with {(0,0,0), (0,1,1), (1,0,1), (1,1,0)}. The alias relationships are 

x 1= x 2x 3 , x 2= x 1x 3  and x 3= x 1x 2 . It means that, for example, x 1  and x 2x 3  can 

not be estimated separately in a full model. A reduced (saturated) estimable model 
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with estimable set { 1,x 1,x 2,x 1x 2} is                

                              y =  β0+β1x 1+β2x 2+β3x 1x 2

One can check that it separately identifies the following three estimable sets of 

size n=4  { 1,x 1,x 2,x 3 },{ 1,x 1,x 3,x 1x 3 } and  { 1,x 2,x 3,x 2x 3 }.  We will call this 

each  estimable set as a leaf and the collection of leaves as a fan. Moreover, 

there are no other saturated estimable models by a 4-point designs. In fact, the 

collection of these four models is a maximal fan. 

Let β= (β1,...,βm)  denote a multi-exponent. An estimable set should satisfy 

divisibility condition( D ) which is that if a term x β= x
β1
1 ⋅⋅⋅x

βm
m
 is in the set, 

then every term which divides x β  is also in the set. Note that the size of a leaf 

is always equal to the sample size n  of distinct points and leaves are saturated 

(see Kim, Park and Kim (2002)).  

Definition 1.  For fixed α= (α1,...,αm) , a finite set L of n monomials on 

variables {1, x 1,x 2,...,x m } is called a leaf for fixed (n, α) if it satisfies 

D-condition and the power of each variable x i  of monomials is less than α i .

 

Let Λ(n, α)  denote the set of all leaves for (n, α). Note that the number of 

all possible leaves for given n and α= (α1,...,αm)  is same as the number 

p( I
α
,n)  of partitions of positive integer n in the multi-dimensional integer grid 

I
α= { 0,1,...,α1-1  } ×...× { 0,1,...,αm-1}.  

We denote by D(n, α)  the set of all possible n-point designs in the grid I α  

and denote the design matrix for a leaf L at d in D(n, α)  by X(L,d)  and the 

determinant of a matrix A by det[A].

Definition 2. A leaf  L is called estimable by a design d if its design matrix 

X(L,d)  at d is invertible or equivalently det[ X(L,d)]≠  0.

 

Let E(d) be the collection of estimable leaves of d and we call this a fan of d.

Definition 3.  A design d in D(n, α) is  called a maximal fan design if E(d) is 

the same set of all possible leaves, that is, E(d) = Λ(n, α).  

Existence of a maximal fan design depends on the number n of design points 

and the size α  of multi-dimensional integer grid I α.  We give an example as an 

illustration. 
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Example 1.  Consider FF designs with 4 design points from mixed level 

experiments D( 4,(2,3,2)). There are 6 leaves in Λ(4, (2,3,2))  as follows : 

     L1 = { 1,x 1,x 2,x 1x 2}   L2 = { 1,x 1,x 2,x
2
2}   L3 = { 1,x 1,x 2,x 3}   

     L4 = { 1,x 1,x 3,x 1x 3}   L5 = { 1,x 2,x
2
2,x 3}   L6 = { 1,x 2,x 3,x 2x 3}

By using an exhaustive method, we can verify only eight maximal fan designs 

out of 495 four-point designs in the grid I α= {0,1}×{ 0,1,2}×{ 0,1}  exist. They 

are all isomorphic in sense that a design can be obtained by switching the levels 

from another design. A design as shown Figure 1 is 

d = {{0, 0, 0}, {1, 1, 0}, {1, 0, 1}, {0, 2, 1}}

The corresponding {det[ X(Li,d)]| i=1,2,...,6} = {2, -2, -3, -1, -2, 2} and hence 

all not zero, so  the design is a maximal fan design and best.
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[Figure 1 : A maximal fan design for 2×3×2 mixed level design]

3. Locally maximal designs 
 

If there exists a maximal fan design like Example 1, it would be the best choice 

of FF design. Actually, a maximal fan design does not always exist and the 

existence problem of maximal fan design is still open. Caboara, Pistone, Riccomago 

and Wynn (1997) proved that a maximal fan design with n distinct points in m  

dimensions always exist. Then they conjectured that a maximal fan design on the 

integer grid {0,1,2,...,n-1 }m  exists for any n and m.  It was proved partially 

in Kim, Park and Kim (2002) that maximal fan design for the case α  is 
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nm= (n,n,...,n)  must be a latin hypercube. 

In case of nonexistence of a maximal fan design, it is very natural to think that 

a design which has more estimable leaves is better and hence we give the 

following definition. 

Definition 4.  

 (i) Suppose that d1 and d2 are two FF designs in D(n, α). Define an 

equivalence relation on the set of designs by d1∼d2 if E(d1) is equal to E(d2) and 

say that d1  has the same power of d2.

 (ii) Define an order relation on the set of equivalence classes D(n, α)/∼  by 

[d 1]≪[d 2] if E(d2) contains E(d1) and say that d1 has more power than d2.

The order relation defined above obviously gives a partial ordering in the set 

D(n, α)/∼. We say a design d is locally maximal if there is no design which has 

more power than d.   

   

Example 2.  Consider FF designs with 8 design points from symmetric 

experiments D( 8,( 2,2,2,2) ). There are 24 leaves in Λ(8, (2,2,2,2) )  as follows : 

L 1= {1,x 1,x 2,x 3,x 4,x 1x 2,x 1x 3,x 1x 4}        L 2= {1,x 1,x 2,x 3,x 4,x 1x 2,x 1x 3,x 2x 4}

L 3= {1,x 1,x 2,x 3,x 4,x 1x 2,x 1x 3,x 3x 4}        L 4= {1,x 1,x 2,x 3,x 4,x 1x 2,x 2x 3,x 1x 4}

L 5= {1,x 1,x 2,x 3,x 4,x 1x 2,x 2x 3,x 2x 4}        L 6= {1,x 1,x 2,x 3,x 4,x 1x 2,x 2x 3,x 3x 4}

L 7= {1,x 1,x 2,x 3,x 4,x 1x 3,x 2x 3,x 1x 4}        L 8= {1,x 1,x 2,x 3,x 4,x 1x 3,x 2x 3,x 2x 4}

L 9= {1,x 1,x 2,x 3,x 4,x 1x 3,x 2x 3,x 3x 4}        L 10= {1,x 1,x 2,x 3,x 4,x 1x 2,x 1x 4,x 2x 4}

L 11= {1,x 1,x 2,x 3,x 4,x 1x 2,x 1x 4,x 3x 4}        L 12= {1,x 1,x 2,x 3,x 4,x 1x 2,x 2x 4,x 3x 4}

L 13= {1,x 1,x 2,x 3,x 4,x 1x 3,x 1x 4,x 2x 4}        L 14= {1,x 1,x 2,x 3,x 4,x 1x 3,x 1x 4,x 3x 4}

L 15= {1,x 1,x 2,x 3,x 4,x 1x 3,x 2x 4,x 3x 4}        L 16= {1,x 1,x 2,x 3,x 4,x 2x 3,x 1x 4,x 2x 4}

L 17= {1,x 1,x 2,x 3,x 4,x 2x 3,x 1x 4,x 3x 4}        L 18= {1,x 1,x 2,x 3,x 4,x 2x 3,x 2x 4,x 3x 4}

L 19= {1,x 1,x 2,x 3,x 4,x 1x 2,x 1x 3,x 2x 3}        L 20= {1,x 1,x 2,x 3,x 4,x 1x 4,x 2x 4,x 3x 4}

   L 21= {1,x 1,x 2,x 3,x 1x 2,x 1x 3,x 2x 3,x 1x 2x 3}     

L 22= {1,x 1,x 2,x 4,x 1x 2,x 1x 4,x 2x 4,x 1x 2x 4}

   L 23= {1,x 1,x 3,x 4,x 1x 3,x 1x 4,x 3x 4,x 1x 3x 4}     

L 24= {1,x 2,x 3,x 4,x 2x 3,x 2x 4,x 3x 4,x 2x 3x 4}

By using an exhaustive method, we found out that no maximal fan design out 

of 12870 eight-point designs in the grid I α= {0,1}×{ 0,1}×{ 0,1}×{ 0,1}. 

We consider the following two designs:
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d1:{(0, 0, 0, 0),(1, 1, 0, 0),(1, 0, 1, 0),(0, 1, 1, 0),(1, 0, 0, 1),(0, 1, 0, 1),(0, 0, 1, 1),(1, 1, 1, 1)}

d2:{(0, 0, 0, 0),(1, 0, 0, 0),(1, 0, 1, 0),(0, 1, 1, 0),(1, 0, 0, 1),(0, 1, 0, 1),(0, 0, 1, 1),(1, 1, 1, 1)} 

Design d2 has the same design points as d1 except one point as shown in 

Figure 2. A work on computer shows that two designs are locally maximal and 

the corresponding determinants of design matrices and estimable leaves are as 

follows:

 

{det[X(Li,d 1)] }
24
i=1
 = {-4, 0, 0, 0, 4,  0, 0,  0, 4, -4, 0,  0,  0, -4, 0, 0, 0, 4, 4, -4, 1, 1, 1, 

1}

{det[X(Li,d 2)] }
24
i=1
 = {-2, 1, 1, 1, 0, -1, -1, 1, 2, -1, 1, -1, -1, -3, 1, 1, 1, 1, 1, -2, 0, 0, 1, 0}

E(d1) =  {L 1,L 5,L 9,L 10,L 14,L 18,L 19,L 20,L 21,L 22,L 23,L 24}

E(d2) = Λ(8, (2,2,2,2) ) -{L 5,L 21,L 22,L 24}

 

Locally maximal designs d1 and d2 are the best if we wish to estimate 

estimable leaves E(d1) and E(d2) or less respectively. However, the comparison 

directly among locally maximal designs is meaningless because E(di)'s do not 

contain each other. If an ordering is given as the importance such as the 

hierarchical principle on factorial effects or leaves, then we could find locally 

maximal designs which are most effective based on the ordering. 

Usually, we have assumed that the following hierarchical principle. 

 (i) Lower-order interactions are more likely to be important than higher-order  

       interactions.

 (ii) Interactions of the same order are equally likely to be important.

Example 3. Consider the two locally maximal designs d1 and d2 in Example 2. 

Under the usual hierarchical principle, we say that L1∼L20 is more important 

than L21∼L24  which are not able to estimate all main effects, and leaves in L1 

∼L20 are equally good. Thus, under the hierarchical principle, we say that a 

design which has more estimable leaves in  L1∼L20 than the other design is 

better. In this respect, d2 is much better than d1. 

Actually, d1 is a regular design and is formed by the defining relation 

I= x 1x 2x 3x 4  ; the other hand d2 is a nonregular design. From algebraic relation, 

x 1x 2  and x 3x 4 , for example, can not be estimated simultaneously in d1. Even 

though d1 is a minimum aberration design and best among regular designs, the 

design is not allowed to have enough estimable leaves from the beginning because 

of very strong algebraic restrictions. That is a good reason why we have to look 

at nonregular designs in respect to estimability.  
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[Figure 2 : Two FF designs for 2 4-experiment]

4. Concluding Remarks 

Traditionally, nonregular designs were not advocated because of their complex 

aliasing structure. However, in last decade, they have received increasing attention 

in the literature. The problem is how to assess, compare and rank nonregular 

designs in a systematic fashion. In this paper, we propose maximal and locally 

maximal criteria for this purpose, paralleling the minimum aberration criterion used 

for assessing regular designs. In principle, it is not hard to apply the criterion 

given here. However, as n or α  goes to larger, difficulties of calculating arise more 

rapidly. We have lots of work to do to make easier comparisons. 
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