• Title/Summary/Keyword: Fractional brownian motion

Search Result 44, Processing Time 0.023 seconds

ESTIMATION OF DRIFT PARAMETER AND CHANGE POINT VIA KALMAN-BUCY FILTER FOR LINEAR SYSTEMS WITH SIGNAL DRIVEN BY A FRACTIONAL BROWNIAN MOTION AND OBSERVATION DRIVEN BY A BROWNIAN MOTION

  • Mishra, Mahendra Nath;Rao, Bhagavatula Lakshmi Surya Prakasa
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1063-1073
    • /
    • 2018
  • We study the estimation of the drift parameter and the change point obtained through a Kalman-Bucy filter for linear systems with signal driven by a fractional Brownian motion and the observation driven by a Brownian motion.

Effective Bandwidth for a Single Server Queueing System with Fractional Brownian Input

  • Kim, Sung-Gon;Nam, Seung-Yeob;Sung, Dan-Keun
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.10a
    • /
    • pp.1-8
    • /
    • 2003
  • The traffic patterns of today's IP networks exhibit two important properties: self-similarity and long-range dependence. The fractional Brownian motion is widely used for representing the traffic model with the properties. We consider a single server fluid queueing system with input process of a fractional Brownian motion type. Formulas for effective bandwidth are derived in a single source and multiple source cases.

  • PDF

Some Limit Theorems for Fractional Levy Brownian Motions on Rectangles in the Plane

  • Hwang, Kyo-Shin;Kang, Soon-Bok;Park, Yong-Kab;Jeon, Tae-Il;Oh, Ho-Seh
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.1
    • /
    • pp.1-19
    • /
    • 1999
  • In this paper we establish some limit theorems for a two-parameter fractional Levy Brownian motion on rectangles in the Euclidean plane via estimating upper bounds of large deviation probabilities on suprema of the two-parameter fractional Levy Brownian motion.

  • PDF

A NOTE ON FUNCTIONAL LIMIT THEOREM FOR THE INCREMENTS OF FBM IN SUP-NORM

  • Hwang, Kyo-Shin
    • East Asian mathematical journal
    • /
    • v.24 no.3
    • /
    • pp.275-287
    • /
    • 2008
  • In this paper, using large deviation results for Gaussian processes, we establish some functional limit theorems for increments of a fractional Brownian motion in the usual sup-norm via estimating large deviation probabilities for increments of a fractional Brownian motion.

  • PDF

BERRY-ESSEEN BOUND FOR MLE FOR LINEAR STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN BY FRACTIONAL BROWNIAN MOTION

  • RAO B.L.S. PRAKASA
    • Journal of the Korean Statistical Society
    • /
    • v.34 no.4
    • /
    • pp.281-295
    • /
    • 2005
  • We investigate the rate of convergence of the distribution of the maximum likelihood estimator (MLE) of an unknown parameter in the drift coefficient of a stochastic process described by a linear stochastic differential equation driven by a fractional Brownian motion (fBm). As a special case, we obtain the rate of convergence for the case of the fractional Ornstein- Uhlenbeck type process studied recently by Kleptsyna and Le Breton (2002).

Signal Detection Using Wavelet Transform in Fractional Brownian Motion (Fractional Brownian Motion 잡음환경 하에서 웨이브렛 변환을 이용한 신호의 검출)

  • 김명진
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.21-24
    • /
    • 2000
  • Fractional Brownian motion(fBm)은 long-term persistence 특성을 가진 자연 현상, 1/f 잡음, 깊이가 낮은 해저에서의 배경음향잡음 등을 모델링하는데 많이 사용된다. 이 fBm은 nonstationary 유색잡음이다. 이러한 유색잡음 환경 하에서 신호를 검출하기 위한 한 방법은 Fredholm 적분방정식의 해를 구하는 것이다. 이 방정식을 이산화 하면 잡음의 공분산 행렬의 역행렬이 포함되어 계산량이 많다 본 논문에서는 fBm 잡음의 공분산 행렬을 웨이브렛 변환하여 얻어지는 행렬, 즉 fBm의 멀티스케일 성분들의 공분산행렬은 밴드화된 블록들로 근사화할 수 있다는 성질을 이용하여 적은 계산량으로 신호를 검출하는 알고리즘을 제안한다.

  • PDF

GENERATING SAMPLE PATHS AND THEIR CONVERGENCE OF THE GEOMETRIC FRACTIONAL BROWNIAN MOTION

  • Choe, Hi Jun;Chu, Jeong Ho;Kim, Jongeun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.1241-1261
    • /
    • 2018
  • We derive discrete time model of the geometric fractional Brownian motion. It provides numerical pricing scheme of financial derivatives when the market is driven by geometric fractional Brownian motion. With the convergence analysis, we guarantee the convergence of Monte Carlo simulations. The strong convergence rate of our scheme has order H which is Hurst parameter. To obtain our model we need to convert Wick product term of stochastic differential equation into Wick free discrete equation through Malliavin calculus but ours does not include Malliavin derivative term. Finally, we include several numerical experiments for the option pricing.