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APPROXIMATION OF EVOLUTION EQUATIONS
DRIVEN BY FRACTIONAL BROWNIAN MOTION WITH
HURST PARAMETER 0 < H < 1/27

YooN TAE Kim?

ABSTRACT

We consider the problem for approximate solution of linear stochastic
evolution equations driven by infinite-dimensional fractional Brownian mo-
tion with Hurst parameter H € (0,1/2). The error of the approximate
solution for the explicit Euler scheme is investigated.
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1. INTRODUCTION

In various interesting applications of probability, several types of stochastic
evolution equations are often used to model many random phenomena, of scientific
objects. In reality we cannot expect the solution of an equation to be observed
at all space and time. It is usually assumed that we have only a finite dimension
projection of the solution and sampling instants over a specified time. There have
been the studies of the approximation of evolution equations driven by Brownian
motion (see e.g., Greksch and Kloeden, 1996; Gyongy, 1998, 1999; Hausenblas,
2003). We refer, in particular, to the work of Hausenblas (2003) in which the
accuracy of approximation of quasi-linear evolution equation was investigated
through space and time discretization. Kim and Rhee (2004) have studied the
approximation of evolution equation driven by fractional Brownian motion (fBm)
with Hurst parameter H € (0,1/2). Note that fBm has the difference of the
behavior between the cases H € (0,1/2) and H € (1/2,1).
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For stochastic differential equation with respect to fBm in infinite dimensional
case, very recently there have been the few works (see, e.g., Grecksch and Ahn,
1999; Duncan et al., 2000, 2002; Maslowski and Nualart, 2003; Tindel et al.,
2003). Among these works, Maslowski and Nualart (2003) have studied a linear
equation with multiplicative noise but they treat only the case H € (1/2,1). On
the other hand, Tindel et al. (2003) have considered a linear stochastic evolution
equation in a Hilbert space driven by cylindrical fBm with H € (0,1).

In this paper we investigate the rate of convergence for approximation of linear
evolution equation considered by Tindel et al. (2003) in the case of H € (0,1/2).
For this we take the method of moments as the spatial approximation and Euler
scheme as time discretization respectively.

2. STOCHASTIC EVOLUTION EQUATION AND APPROXIMATION

Let V be a separable Hilbert space. Assume that A : Dom(A) DV -V
generates the strongly continuous semigroup T'(t) := e!4, ¢t > 0, and ® € L(V, V).

We study an approximation of Stochastic Evolution Equation driven by V-valued
fBm (BH(t)), t > 0, with H € (0,1):

(2.1)

dX(t) = AX(t)dt + ®dBH(t), te€ [0,T),
X(0) =x20€V.

Since the operator A can be shifted by A — AI, we may assume that A generates
an semigroup of strictly negative type. We denote by Vs, § > 0, the domain
of the fractional power (—A)® equipped with the norm ||z|ls = ||(=4)°z|| for
x € Dom((—A)?). The solution of the initial value problem (2.1) will be given as
the mild solution, i.e., for t € [0, T],

X(@¢) =Ttz + /0 t et=9)4pdBH (s). (2.2)

Here for the definition of Wiener integral with respect to fBm, see Tindel et
al.(2003).

ASSUMPTION 2.1. It will be assumed that
(1) (=A) is a nonnegative self-adjoint operator on V.

(2) There ezist a € (0,H), v > 0 and p > 0 such that v > o + p and the
operator ®*(— A2+~ for ail § € [p,] is trace class, where ®* is the
adjoint operator of .
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By a standard argument (see e.g., Theorem 5.9, DaPrato and Zabczyk, 1992)
and Theorem 4 of Tindel et al. (2003), we have

THEOREM 2.1. Under Assumption 2, there exists a unique mild solution
(X(t)), t € [0,T}, belonging to

L2([0,T] x ©; Dom((~A)**)) N C((0, T}; Dom((— A)"))
for X(0) = 2o € Dom((—A)").

Let us denote (Ap,V,) the approximation of (A4,V) by the method of mo-
ments where V,, is the d,-dimensional subspace of V' (see e.g., Harrington, 1993).
Throughout this paper we assume the following conditions:

ASSUMPTION 2.2. For everyn > 1, B, : V, = V and D, : V, - V are
bounded operators such that

(1) \Pall £ C1, || Dnll £ Co, where Cy and Cy are independent of n.
(2) PnDy, = I, where I, is the identity operator on V,.
(3) There exists a function s : N — [0,1] such that limp_ ps(n) =0 and

(i) (I = DnFu)zll < @s(n)llzlls
(ii) |A(I = DpP)z| < @s(n)||Anlll|zlls for all z € Dom((—A)%) and § €
(0,4], where A, = P,AD,

(4) For a sequence T, > 0 such that lim, o7 = 0, the following stability
condition is satisfied: ,||Ap|| < 1 foralln =1,2,---, where A, = D, A, P,

Our approximation is given by

(2.3)

dXn(t) = AnXn(t)dt + ©,dP,BH(2), t€ [0, T,
X,(0) = Pazo €V,

where ®,, is a bounded linear operator defined on V,, such that &, = P,®D,.
Note that P, B (t) is a d,-dimensional fBm, i.e., P, B¥(t) := BE(t) = (BH (1), - --
BH (t)) where (@H ), i=1,--- ,n are independent, real valued fBm each with the
same Hurst parameter H. Let {7,,n > 1} be the sequence of time step sizes
corresponding to the space V;, for time discretization. Let us denote by Y, (k) the
approximation of X;,(k7,). Then

(2.4)

Yalk + 1) — Ya(k) = maAnY(k) + PnAyBE
Yn(o) = Ppxo €V,
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where Ay B = BH((k+ 1)1,) — BJ (k). For every integer n > 1, we construct
the approximation:

k—1
Yo(k) = (I + TaAn) Pazo + ) (I + TAp)F~ 10,40, BY. (2.5)
=0

The rate of convergence for the approximation (2.5) of the solution given in (2.1)
is given by the following Theorem.

THEOREM 2.2. For H € (0,1/2), we have the following error bound
E|| X (krs) — DnYn(k)”%
< CL(@5(n) + 7ol (M) | Anl* + 72)l|zoll5 + Cor(n)pa(n)
+C3Tn||An||2 max(0,1+p—y—a) + C4TT2LH“An“2(H_a)

+Cs || An PP O2H07T70) 4 Gy || A, | HmexO1e=r—0) ) (2.6)

where k(n) = ||An||l|4;1|| and C;, i = 1,---6, is a generic notation for positive
constant which does not depend on n, but Hurst parameter H.

3. PROOF OF THEOREM 2

We write [t]T(7,) = (k + 1)1, and [t]™ (1) = k7, if k1, <t < (k+ 1)75, and
m(t) = [t|~(7)/7Tn. Then (2.5) can be written as '

[t~ ()
Ya(m(t)) = (I+7A4n)™ Pyzo+ / (I+7,A,)™O~()-1p dBH (s). (3.1)
0
Hence
5 .
X (ktn) — DpYu(k) := > IL(t), (3.2)
=1

where

INt) = e[t]_(T")Axo - D, I+TnAn)m(t)ano,
n

M=)
I3(t) = / ™ (m)=9)419 _ D, &, P,JdBH (s),
0
M- (r) _
B(t) = / (7 (w)=94 _ o (r)=9)An p 1Dy &, Pod B (s),
0
[t]= () - _ -
IA(t) =/ D et )=l (7n) =7 ) An (5] (m)+ma=s)An _ I\ P, D, ®, P,dB(s),
0 .

[t]=(mn) i -
Ig(t) = / Dn[e([t] (Tn)=[8] 7 (mn)~Ta)An _ (I+ TnAn)m(t)_m(s)_l]PnDn(I)nPndBH(S)-
0



APPROXIMATION OF EvVOLUTION EQuaTIONS DRIVEN BY FBM 201

Let K* be the operator in L2[0, T] given by

K7(h)(s) = K(t, s)h(s) +/5 (h(u) — h(s))aa—qu(u, s)du, - (3.3)

where K (t, s) is the kernel in the Wiener integral representation of fBm and given
by '

H-(1/2)
KH(t,s) =cy (2) (t—s)7(/2) 4 5(1/2)“HF<—Z-> (3.4)

cy being constant and

z—1
F(z)=cy (% - H) / uH-0/2 (1 -1+ u)H_(1/2)>du. (3.5)
0
e I}(t) term: First we write

IO
< NIT([H ™ ()0 — el Angg |2 4 el () An gy — D (T + 7, 40) 87 ™) B2
= JE(t) + J2(2).
Let E(A), A > 0, be the resolution of the identity of a non-negative self-adjoint

operator (—A). Then by using the spectral representation of self-adjont operator
and (1) of Assumption 2,

Ji(t) = / NP WA E(A) (Do By — Dol < C2(m)[mol2. (36)
0

Since A, is a bounded self-adjoint operator on V, there exist real numbers ay,
b, and the resolution of the identity E,()\) such that En()\) = 0 for X\ < a, and
I for A > by, where a, = inf{< A z,z >: ||z|| = 1} and b, = sup{< A,z,z >:
llz|| = 1}. By using (—A)’D, = D,(—Ap)?, ell™(m)An — p, ™ (m)Anp and
(I + ThAp)™ = Dy (I + 1, Ap)™O P, we get

[l Al -
Jt) = / N2 (e~ (mIA (1 — 7 )™ d)| B (M) o2
0

| An 2P (eI — (3 — 7 | Ap )P OVI(T ~ En(lAn =)ol
= JE(t) + JE(t).

Since suppc < le™™ = (1 — )" < L for n = 1,2,--+, we find that from
(—Ap)? = Dp(—Ap)PP, and Remark 4.2 in Hausenblas (2003)

Jai(t) < CTﬁ/O (VI En(Naoll* < O35 (m) | Anll®lloll} + loll3].  (3-7)
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Let E,(||An||—) = sxlim,_, g+ Ep(||An||—€) where s*lim means strong convergence
of operators. By the same estimate as for J2!(¢), we have

TR (8) < CralAn]?s » im ||[T - En(|4nll — )}zl
< CrallAnll* lim (JAn]l - €)™ /0 (=N Ea (Aol
< Crilgi(n )\A ||2”liro||7+ lloll3)- (3.8)
From (3.6), (3.7) and (3.8), we obtain
Li(t) < C(p3(n) + 1oy ()| Al + 7)ol l3- (3.9)

o I2(t) term: Using the relatidnship between Wiener integral with respect to fBm
and Wiener integral with respect to Wiener process (see e.g., Tindel et al., 2003),

EIZ@t))2 < 22/ ’ (Al ()=94g[[ — D, P,Jei| K2(t, 5)ds.

+2 Z / / i) ((_ Aypellti= -0 _ A)pe([t}‘(fn)-s)A)

2
(u s)du| d

]~ ()

Cla

= L2l(t) + L2(1).

We define the measure p!(B), B € B(R), by p(B) = |E(B)®[I — D,P,)e||*.
By using the properties of spectral representation and the same method as the
proof of main Theorem of Tindel et al. (2003), we have

L2(t) < C(H Z / e / L TAON (G EDE s

< Ctr[(I - DnPn)@(—A)Z(” B &*(1 - D, P,)]
< Cr(n)pa(n),  (3.10)

and also

‘ .°° o0 t s s
22 2 O NH=(3/2) (o _ NH—(3/2)
2 (t)sc<H>§l=13 /0 22 /0 /0 /0 (s — w3/ (s — )

% (e—(u+v))\ _ e(s+u)/\ _ e—(s+v))\ + 6—25)\) dl‘il()\)

< Cr(n)pa(n). (3.11)
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From (3.10) and (3.11), it follows that

EIZ®)Z < Cr(n)pa(n). (3.12)

o I3(t) term: It is obvious that E||I3(t)]|3 = 0.
e I3(t) term: By the definition of stochastic integrals with respect to fBm and
(—=A)PD,, = Dyp(—Ap)?, we have

E|l I (t)lI7
® ) || - . 2
_<_ 22/ (_.An)pe([t]_(Tn)_[S]_(Tn)—Tn)An [e([s]_(Tn)+Tn—s)An _ I]DnQnPnel
1=170
x K2(t, s)ds.

t]7 (tn t] 7 (Tn . .
[t]~ () /[] (7 )(-—An)p (e([t]—(Tn)—[u]'(‘rn)—rn)An[e([u]'(rn)+rn—u)An —I]

x
+2Z/
1=1"0

2
_e([tlw(fn)_[sl—(Tn)_Tn)An [e([sl—(Tn)‘f'Tn—S)An _ I]) Dn(l)npnel ?8%(1),, S)du dS

= LAl(t) + LE(3).

Using the inequalities K (¢, s) < c(H)(t — s)F~ (/2 sH-(1/2) 0 < s —[s]7 (1) < 7
and 1 — e %.< z for z > 0, we have

o 0o t.‘('rn 2
Ly <cy / A% / “ )e—2<[t1—(m-[sr(rn)—mx(e—([sl-(rn)+rn—s» _ 1)

x[([£]™ () — )s]*"~1dsd|| En(\) Da®n Preul|.

2= [ 2ot 2mr [P L omy s\
< Or? / A2L+o—H) g2 / ~s g2H- (t— —) d
; o A e "8 3\ S

X d|| En(A\) D@y Pres ||
oo oo

< CT,%Z /0 A2+ H) X g B (M) Dy ®,, Py ||
=1

< Crp||An|Pex@re=r=e), (3.13)
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On the other hand,

Ly (t)

o t]~(mn t]|” (7t t]|” (T -
s /H (7s) /[1 (7n) /[1 (7n) - An)p(e([t]—(T,,)_[ul—<fn>—rn)An
=1 0 s s

1 M)A _ [ _ o017 ()=l () =) [ [ (7 =) A _ I])
Dy, Pocr, (—An)P (eatl-<rn>—[v1—<fn>—rn>fin (Bl )+ =0 A _

—e[tI™ ()~ [s]™ (7n)=Tn) An [e([S]—(TnHTn—S)An - []>Dn<pnpnel>

0K oK
X —az(u, s)—é; (v, s)dudvds

O rltlIm () pltI=(mm)  plit]7(m) poo _
=2 Z/ / / / ’\2ph(u: v, s, ’\)d||En(>‘)an)nPnel||2
=10 s s 0
K

0 0K
x%(u, S)E (v, s)dudvds, (3.14)

where h(u,v, s, ) is given by h(u,v, s, A) = h(u, s, A\)h(v, s, A),
h(z,s,\) = e—([t]‘(fn)—[2]+(fn))>\[1 - e—([z]+(fn)~1‘)>\]
_e--([t]‘(Tn)—ISI““(Tn))A[1 - e—([SI“L(Tn)—S)/\]_
From |(0K/0u)(u, s)| < C(H)(u — s)¥~(/2) the above (3.14) becomes

L7 (t)

2 poo  rliT(m) [ lst(m) i \
< 012/ A p/ / h(u, s, \)(u — )T=CDdy | ds
=1 0 0 S

X d|| En(A) Dy ®n Pre |2
0 oo ]~ (mn) (t]= () _ ’
+C2 Z / )‘zp / / h('U’, S, A) (u - S)H-(?’/Z)du ds
 Jo 0 s+ (7)
xd|| En(\) Dy®;, Prey)?
= LA2L(t) + L4%2(¢).
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As for LA21(1),

® roo ol =) [ plslt(m) s\
L2 () CZ/ Azp/ / h(u, s, \)(u — s)T=C2ay | ds
0 ]

=1
xd|| En(A\) Dp®n Prei|?,

where h(u, s, \) is given by

h(u,s,\)
= e—([tl_(Tn)~[S]+(Tn))>\[1 _ e“([S]J“(Tn)—U))\] _ e—([t]'(Tn)—[S]“L(Tn))/\[l - e—([S]+(Tn)—S)>\].

By the integration by parts, we can write L:21(t) as follows:

L2y = CZ / / o 17 () =[s]+ (Tn))A g—=2([s]+ (7) —s)A

( [SJ+(Tn) s)A _ ) ([g] (7 )——3)2H 1d5d||E ) )an)npneIHQ
+CZ / A2e+1) / o )e~2([ﬂ‘(m>—[sl+(rn) I o =2([s]* () —5)A
0 0

[s]* () 2
x ( / e(“”s))‘(u—s)H_(l/Q)du> dsd||En(A\) Dy ®y, Paey ||

.. 74211 4212
= [A211 4 pa212

Using the fact that E,()) is the resolution of the identity of bounded operator
A, we obtain

m ~
LI (1) < Or2H|| 4, / NPe=H) 4| (X) Dy Paey|
0
< Cr2H| A, |2H-2), (3.15)

and also
L22(t) < Cry|| Ap|[Pmex(@14p=71-0), (3.16)
Now we consider the term L222(t). First we write h(u, s, A) = hy(u, A) + ha(s, A),
where
hi(u, A) = e~ (07 ()= ()2 e ([ () —wA]
(s, A) = —e= (7= rDA [ _ (el (m)=s)A),
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Using hy and l~1,2, we have

oo 1% [~ () [t~ () _ H—(3/2 :
iy <oy [T | [ s N 91w ) s
=1 0 0 {

s|t(mn)

Xd||En(A\)Dn®n Prey)?

% roo 1= (m) [ [l () _ 2
+CY [ A ho(s, A)(u — )Gy | ds -
=170 0 [

st (mn)
= L2 (1) 4 JA222(y),

By the inequality 1 — e < z for 0 < z < 1, the term L2?21(¢) can be bounded
by

12 < 023 A ) 2B ) D Pl
=1
< Ol () Hrall AnllPH + 720+ || Ay |2H]
xS [T A a5, () DB P
< CT,%||f;:|1|2(ma"(°’1+”‘7“")+H). (3.17)
By a similar estimate as for L4*?!(t), we have
Li22(t) < C72|| Ay || max (O +p—y—)+H) (3.18)
Combining (3.13), (3.15), (3.16), (3.17) and (3.18), we obtain

ENIa@)} < CrrallAn|?mexO140m7=0) 1 Cor2H|| 4, |2(H=2) (3.19)
+C37_n”An”2max(0,1+p—7—a) + 047_3||An”2(max(0,1+p—'y—a)+H).
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e I3(t) term: By the definition of stochastic integrals with respect to fBm with
H e (0,1/2),

E[II )17
< 22/ (7s) (A )p[e([t] () —[u] ™ (Tn)—Tn) An —(I+7Tn A )m(t)—m(u) 1}
0
Dy ®, Poey||2K2([t] (10), 8)ds
t n t|” (Tn -
[] (T) /[] ( )(—An)p([6([t]—(7'n)_[u]—(Tn)"Tn)An

—(I + ToAp)™O=m=1] _ [ (7 ()=l (7n)=7n) An

2
(u, s)du|| ds

—(I+ TnAn)’”“)—m(s)-l]) D, ®,P,e %%

= L3 (t) + L32(t).

By a similar estimate as for L' (t) and e — (1 —z)" < /nz for 0 < z < 1 and
n=12--,

L3N

o 00 2A[t]™ (7n) s 2H-1
< Cmy lZ/O )\2(”"_1{)627")‘/0 e Sl (t — ﬁ) ds
=1

d||En(N) Dy, ®, Prey|)?

2= [\ 22— H) 2 2NE” (7n) 2H-1 s \ 21
+CT / AAeTh—H ) glTn / e st (t - ——) ds
"2, A )

d|| En(\) Dy ®p Prei|1? |
< Cr| Ap |2 O12=7=0) 4 O72|| Ay |2 rex(02Fp=7—2), (3.20)

We define a function g by

g(fu,, s, }\) = [e“([t]_(Tn)"[u]_(Tn)"Tn))‘ — (1 - Tn)\)m(t)-—m(u)—l]
et )=l () =rA _ (1 _ . yym-m(s)-1y,
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Then by a similar estimate as for L22(t) and g(u,s,\) = 0 for s < u < [s]* (),
we have '

2 roo () [ rl=(rm) e N
L2(t) < C’Z/ )\2"/ / g(u, 5, \)(u — s)T=C/2dy | ds
=1 V0 0 s

Xd|| En(A\) Dpn®,, Prey|?

(1) [l () 2
< CZ/ 2”/ / g(u, s, A)(u — )Gy | ds
[

s|t ()

xd|| En(X) Dy ®n Pre]|?
<Cm ), /0 N (117 (7)) + 727 ]d)| En(X) Dn @ Paei|?

< Oy || Ap|[2(mex(01+p—y—0)+H) (3.21)
From (3.20) and (3.21), it follows that

EILR(0)1; < Curall An[PPXO107770) 4 Cyrl | Ay 202 F07070)
+C3n| A |[2Lmex(O1Hpmr =), (322)
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