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ESTIMATION OF DRIFT PARAMETER AND

CHANGE POINT VIA KALMAN-BUCY FILTER FOR

LINEAR SYSTEMS WITH SIGNAL DRIVEN BY

A FRACTIONAL BROWNIAN MOTION AND

OBSERVATION DRIVEN BY A BROWNIAN MOTION

Mahendra Nath Mishra and Bhagavatula Lakshmi Surya Prakasa Rao

Abstract. We study the estimation of the drift parameter and the

change point obtained through a Kalman-Bucy filter for linear systems
with signal driven by a fractional Brownian motion and the observation

driven by a Brownian motion.

1. Introduction

Change-point problems or disorder problems have been of interest to statis-
ticians for their applications and for probabilists for their challenging problems.
Our aim in this paper is to consider estimation of the change point τ and the
drift parameter θ for a linear system when the signal is driven by fractional
Brownian motion and the observation is driven by a Brownian motion with a
small diffusion coefficient. We assume that τ ∈ [t1, t2] and θ ∈ Θ compact in
R. Consider the linear system

(1.1)
dXt = θXtdt+ ε dV Ht , X0 = x0 6= 0, 0 ≤ t ≤ T,
dYt = ft(τ)Xtdt+ ε dWt, Y0 = y0, 0 ≤ t ≤ T,

where {V Ht , 0 ≤ t ≤ T} is the standard fractional Brownian motion with
Hurst parameter H ∈

[
1
2 , 1
]

and {Wt, 0 ≤ t ≤ T} is the standard Brownian
motion independent of each other. Suppose that the function ft(τ) = h if
t ∈ (0, τ ], and ft(τ) = g if t ∈ [τ, T ] where h and g are known constants with
h 6= g. We assume that the process {Yt, 0 ≤ t ≤ T} is observable but the state
{Xt, 0 ≤ t ≤ T} of the system is unobservable.
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We now estimate the change point τ by τ̂ε and θ by θ̂ε based on the ob-
servation {Yt, 0 ≤ t ≤ T} by the maximum likelihood method and study the
asymptotic properties following the methods in Ibragimov and Has’minskii [2]
and Prakasa Rao [12]. Kutoyants [6] investigated a similar problem for linear
systems driven by independent Brownian motions. We show that the normal-
ized sequence

(ε−2(τ̂ε − τ), ε−1(θ̂ε − θ))
has a limiting distribution as ε→ 0.

Proofs of results presented in this paper are akin to those discussed in Mishra
and Prakasa Rao [8, 9]. In view of the fact that the observation process Y is
driven by a Brownian motion in the model studied here, the arguments get
much simplified and hence we consider this important special case. Detailed
proofs are presented in Mishra and Prakasa Rao [10].

2. Signal and observation

Let us consider the model

(2.1)
dXt = θXtdt+ ε dV Ht , X0 = x0 6= 0, 0 ≤ t ≤ T,
dYt = ft(τ)Xtdt+ ε dWt, Y0 = y0, 0 ≤ t ≤ T,

where {V Ht (t), 0 ≤ t ≤ T} is the standard fractional Brownian motions with
Hurst parameter H ∈

[
1
2 , 1
]

and {Wt, 0 ≤ t ≤ T} is the standard Brownian
motion independent of each other. Let ft(τ) = h if t ∈ [0, τ ] and ft(τ) = g
if t ∈ (τ, T ], where h and g are known constants with h 6= g. Here τ is the
change point and θ is called the drift parameter. We assume that the process
{Yt, 0 ≤ t ≤ T} is observable but the state {Xt, 0 ≤ t ≤ T} of the system is
unobservable. The problem is to estimate the drift parameter θ and the change
point τ based on the observation Y = {Yt, 0 ≤ t ≤ T} and study the asymptotic
properties as ε → 0. The system (2.1) has a unique solution (X,Y ) which is
a Gaussian process. Suppose that we observe the process Y alone but would
like to have information about the process X at time t. This problem is known
as filtering the signal X at time t from the observation of Y up to time t. The
optimal solution to this problem is the conditional expectation of Xt given the
σ-algebra generated by the process {Ys, 0 ≤ s ≤ t}. Since the processes (X,Y )
is jointly Gaussian, the conditional expectation of Xt given {Ys, 0 ≤ s ≤ t}
is linear function of the observation {Ys, 0 ≤ s ≤ t}. It is also the optimal
filter in the sense of minimizing the mean square error. Let Pθ,τ denote the
probability measure induced by the process {(Xt, Yt), 0 ≤ t ≤ T} when (θ, τ)
is the true parameter vector and Eθ,τ is the expectation under the probability
measure Pθ,τ . The problem of finding the optimal filter reduces to finding the
conditional mean πt(θ, τ,X) = Eθ,τ (Xt|Ys, 0 ≤ s ≤ t). This problem leads to
Kalman-Bucy filter if H = 1

2 . Le Breton [7] investigated this problem for a
simple linear model driven by a fractional Brownian motion. Kutoyants [6,
p. 206] considered the problem of estimation of the drift parameter and change
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point applying Kalman filtering technique using the equations for the optimal
filter when the signal and the observation system are driven by independent
Brownian motions. Kleptsyna et al. [5] presented a general approach to filtering
for linear systems driven by independent fractional Brownian motions when the
drift functions are bounded and smooth. A close look at the proofs in Kleptsyna
et al. [5] indicate that their results continue to hold for the drift function of
the type ft(τ) when the observation process Y is considered as two distinct
processes on the intervals (0, τ) and [τ, T ] as was the case in the optimal filter
derivation in the equations (6.27) to (6.30) in Kutoyants [6, p. 206] for linear
systems driven by independent Brownian motions. Observe that, as ε→ 0, the
processes converge to the non-random functions

xt = x0e
θt, 0 ≤ t ≤ T

and

yt(τ) = y0 +

∫ t

0

fs(τ)xsds, 0 ≤ t ≤ T.

Define

kH = 2H Γ(
3

2
−H) Γ(H +

1

2
),

κH(t, s) = k−1
H s

1
2−H(t− s) 1

2−H , 0 < s < t

and

(2.2) KH(t, s) = H(2H − 1)

∫ t

s

rH−
1
2 (r − s)H− 3

2 dr.

Let us consider the transformed process

(2.3) Zt =

∫ t

0

κH(t, s)dXs, 0 ≤ t ≤ T,

and let

(2.4) MH
t =

∫ t

0

κH(t, s)dV Hs , t ≥ 0.

Let

λH =
2H Γ(3− 2H)Γ(H + 1

2 )

Γ( 3
2 −H)

and

wHt = λ−1
H t2−2H .

The process MH is a Gaussian fundamental martingale associated with the
fBm V H with the quadratic variation wH . Furthermore the semimartingale Z
can be called the signal fundamental semimartingale (cf. Kleptsyna and Le
Breton [3]). The natural filtrations of the processes X and Z coincide. In
addition, it is known that

Xt = x0 +

∫ t

0

KH(t, s)dZs, 0 ≤ t ≤ T.



1066 M. N. MISHRA AND B. L. S. PRAKASA RAO

Suppose that {ηt, 0 ≤ t ≤ T} is a random process adopted to the filtration
(Ft) such that Eθ,τ (|ηt|) < ∞ on the underlying probability space (Ω,F , P ).
Let πt(θ, τ, η) denote the conditional expectation of ηt given the observation
{Ys, 0 ≤ s ≤ t}. Let {Yt} denote the filtration generated by the process Y . Let

ε νt = Yt −
∫ t

0

πs(θ, τ,X)ds, 0 ≤ t ≤ T,

where πt(θ, τ,X) = Eθ,τ [Xt|Ys, 0 ≤ s ≤ t]. The process ν = {νt, 0 ≤ t ≤ T} is
called the innovation type process. Kleptsyna et al. [4] proved that the process
{νt} is a continuous Gaussian (Yt)-martingale with the quadratic variation
function t and hence a Wiener process. Furthermore, if ζ = {ζt, 0 ≤ t ≤ T} is
a square integrable (Yt)–martingale, ζ0 = 0, then there exists a (Yt)-adapted
process α = {αt, 0 ≤ t ≤ T} such that

Eθ,τ (

∫ T

0

α2
tdt) <∞

and

ζt =

∫ t

0

αsdνs, 0 ≤ t ≤ T.

3. Auxiliary results

Consider the linear system described by (2.1). We have the following repre-
sentation for the process X from the discussion given above:

Xt = x0 + θ

∫ t

0

Xsds+ ε

∫ t

0

KH(t, s)dMH
s , 0 ≤ t ≤ T.

An application of Theorem 4 in Kleptsyna et al. [5] to the process X leads
to the equation

(3.1) πt(θ, τ,X) = x0 +

∫ t

0

πs(θ, τ,X)ds+ ε

∫ t

0

c(t, s)dνs, 0 ≤ t ≤ T,

where c(t, s) is a non-random function and {ν(t), 0 ≤ t ≤ T} is the innovation
process.

In particular, by considering the special case ε = 0 in the equation given
above, we obtain the integral equation

πt(θ, τ, x) = x0 +

∫ t

0

πs(θ, τ, x)ds, 0 ≤ t ≤ T.

Combining the above equations, it follows that there exists a non-random func-
tion c(t, s), 0 ≤ s ≤ T such that

πt(θ, τ,X)− πt(θ, τ, x) =

∫ t

0

(πs(θ, τ,X)− πs(θ, τ, x))ds(3.2)

+ ε

∫ t

0

c(t, s)dνs, 0 ≤ t ≤ T.
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Lemma 3.1. Let θv = θ + εv and τu = τ + ε2u. Under the conditions stated
above, there exist positive constants ct and c1t such that

(i) sup
0≤s≤t

Eθ,τ |Xs − xs|2 ≤ ctε2,

(ii) sup
0≤s≤t

Eθ,τ |πs(θv, τu, X)− πs(θv, τu, x)|2 ≤ c1tε2t.

The bounds in (i) and (ii) hold uniformly for (θv, τu) in a neighbourhood of
(θ, τ).

Proof. An application of the Grownwall’s inequality implies (i) (cf. Prakasa
Rao [15, p. 131]. Another application of Grownwall’s inequality using the
equation (3.2) shows that

|πs(θv, τu, X)− πs(θv, τu, x)| ≤ c1tε sup
0≤s≤t

|νs|, 0 ≤ s ≤ t

and hence

sup
0≤s≤t

Eθ,τ |πs(θv, τu, X)− πs(θv, τu, x)|2 ≤ c1tε2t. �

4. Main results

Fix θ, τ and define θv = θ + εv and τu = τ + ε2u. Suppose u, v > 0. Let

∆t = ft(τu)πt(θv, τu, X)− ft(τ)πt(θ, τ,X)

and

∆t = ft(τu)πt(θv, τu, x)− ft(τ)πt(θ, τ, x).

We now consider the problem of estimation of the change point τ and the
drift parameter θ based on the observation {Yt, 0 ≤ t ≤ T} by the method of
maximum likelihood. Let Pθ,τ be the probability measure generated by the
process Y on the space C[0, T ] associated with the uniform topology when τ is
the change point and θ is the drift parameter. Let θ0 be the true drift parameter

and τ0 be the true change point. The maximum likelihood estimator (θ̂ε, τ̂ε),
based on the observation {Yt, 0 ≤ t ≤ T}, is a random vector at which the
likelihood function

dPθ,τ
dPθ0,τ0

is supremum over the interval [t1, t2]×Θ. We assume that there exists a mea-

surable maximum likelihood estimator (θ̂ε, τ̂ε). Sufficient conditions for the ex-
istence of a measurable maximum likelihood estimator are given in Prakasa
Rao [14]. Note that

J2
τ = lim

ε→0

1

ε2u

∫ τ+ε2u

τ

(g − h)2x2
tdt = (g − h)2x2

τ

exists. Define

L0(u, v) = uξ − 1

2
u2σ2(θ, τ) + JτW1(v)− 1

2
|v|J2

τ for v ≥ 0, u ∈ R,
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where {W1(v), v ≥ 0} is a standard Wiener process and ξ is an independent
Gaussian random variable with mean zero and some variance σ2(θ, τ) to be
specified later. Similarly, for v < 0 and u ∈ R, let

L0(u, v) = uξ − 1

2
u2σ2(θ, τ) + JτW2(−v)− 1

2
|v|J2

τ ,

where {W2(−v), v < 0} is another standard Wiener process. Here W1 and W2

are independent standard Wiener processes.
We now state the main result.

Theorem 4.1. Let τ denote the true change point and θ be the true drift

parameter. Let (θ̂ε, τ̂ε) denote the maximum likelihood estimator of (θ, τ) based
on the observation of the process Y satisfying the linear system defined by (2.1).
Then the normalized random variable

(ε−2(τ̂ε − τ), ε−1(θ̂ε − θ))
converges in law, as ε→ 0, to a random vector whose distribution is the bivari-
ate distribution of location of the maximum of the random field {L0(u, v),−∞ <
u, v <∞} as defined above.

Since the proof of this theorem is similar to the results proved in Mishra and
Prakasa Rao [8, 9] for the estimation of drift parameter and the change point,
we will only sketch the proof. For detailed proofs, see Mishra and Prakasa Rao
[10]. Before we give a proof of this main result, we derive some related results.

Consider the log-likelihood ratio random field

Lε(u, v) = log
dPθv,τu
dPθ,τ

=
1

ε

∫ T

0

[ft(τu)πt(θv, τu, X)− ft(τ)πt(θ, τ,X)] dνt

− 1

2ε2

∫ T

0

[ft(τu)πt(θv, τu, X)− ft(τ)πt(θ, τ,X)]2dt

=
1

ε

∫ T

0

∆tdνt −
1

2ε2

∫ T

0

∆2
tdt

for fixed u > 0 and v > 0 such that 0 ≤ τ, τ + ε2u ≤ T and θ, θv ∈ Θ. Let C[K]
denote the space of continuous functions defined on a compact set K ⊂ R2.

Theorem 4.2 (Local asymptotic normality). Let K ⊂ R2 be compact. The
probability measure generated by the log-likelihood ratio random fields {Lε(u, v),
(u, v) ∈ K} on C[K] converges weakly to the probability measure generated by
the random field {L0(u, v), (u, v) ∈ K} on C[K] associated with the uniform
norm topology as ε→ 0.

In order to prove Theorem 4.2, it is sufficient to prove that the finite di-
mensional distributions of the random field {Lε(u, v), (u, v) ∈ K} converge
weakly to the corresponding finite dimensional distributions of the random
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field {L0(u, v), (u, v) ∈ K} and the family of measures generated by the ran-
dom fields {Lε(u, v), (u, v) ∈ K} for different ε is tight (cf. Prakasa Rao [13]).

5. Proofs of Theorems 4.1 and 4.2

We now state some lemmas and sketch the proofs. Detailed proofs of the
lemmas are given in the authors research report (Mishra and Prakasa Rao [10]).

Lemma 5.1. There exists a constant c > 0 possibly depending on H and T
such that

(5.1) sup
0≤t1≤τ≤t2≤T,θ∈Θ

sup
0≤t≤T

Eθ,τ [∆t − ∆̄t]
2 ≤ cε2.

This lemma follows as application of Lemma 3.1. We omit the proof.
Following the arguments in Kutoyants [6, pp. 168–169], it can be shown that

ε−2Eθ,τ [||ft(τu)π(θv, τu, X)− ft(τ)π(θ, τ,X)||2]→ u2σ2(θ, τ) + vJ2
τ

as ε→ 0 where

(5.2) σ2(θ, τ) = g2

∫ τ

0

x2
tdt+ h2

∫ T

τ

x2
tdt.

Lemma 5.2. The finite-dimensional distributions of the random field

{Lε(u, v), (u, v) ∈ K}
converge to the corresponding finite dimensional distributions of the random
field

{L0(u, v), (u, v) ∈ K}
as ε→ 0.

Proof. We will first investigate the convergence of the marginal distributions of
the random field Lε(u, v) as ε → 0. The convergence of other classes of finite-
dimensional distributions follow from the Cramer-Wold device. Note that

(5.3) Lε(u, v) =
1

ε

∫ T

0

∆tdνt −
1

2ε2

∫ T

0

∆2
tdt.

Consider

1

ε

∫ T

0

∆tdνt =
1

ε

∫ τ

0

∆tdνt +
1

ε

∫ τ+ε2u

τ

∆tdνt +
1

ε

∫ T

τ+ε2u

∆tdνt

= I1 + I2 + I3 (say).

Note that

I1 =
1

ε

∫ τ

0

∆tdνt =
1

ε

∫ τ

0

(∆t −∆t)dνt +
1

ε

∫ τ

0

∆tdνt.

The first integral converges to zero in probability and the second integral is

1

ε

∫ τ

0

∆̄tdνt = vh

∫ τ

0

xtdνt + op(1).
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Similarly

I3 =
1

ε

∫ T

τ+ε2u

∆tdνt = vg

∫ T

τ

xtdνt + op(1).

Observe that

I2 =
1

ε

∫ τ+ε2u

τ

∆tdνt

which is Gaussian with mean zero and variance

1

ε2

∫ τ+ε2u

τ

Eθ,τ (∆2
t )dt = J2

τ + o(1).

From the above computations, observe that, as ε→ 0,

1

ε2

∫ τ

0

∆2
tdt = v2h2

∫ τ

0

x2
tdt+ op(1)

and similarly

1

ε2

∫ T

τ+ε2u

∆2
tdt = v2g2

∫ T

τ

x2
tdt+ op(1).

Furthermore

1

ε2

∫ τ+ε2u

τ

∆2
tdt = (gxt − hxt)2u+ op(1) = uJ2

τ + op(1).

As a consequence of the above computations, we get that the random vari-
able L0(u, v) is asymptotically Gaussian with the mean

−1

2
v2σ2(θ, τ)− 1

2
J2
τ u

and the variance

v2σ2(θ, τ) + J2
τ u

for u > 0 and v ∈ R. Similar results hold for u < 0 and v ∈ R.
We have proved the convergence of the univariate distributions of the ran-

dom field {Lε(u, v), (u, v) ∈ K} as ε → 0, after proper scaling of the process.
Convergence of all the other finite-dimensional distributions of the random field
{Lε(u, v), (u, v) ∈ K} as ε→ 0, after proper scaling, follows by an application
of the Cramer-Wold device. �

Lemma 5.3. Let Γε(u, v) = exp{Lε(u, v)}. Then, for any compact set K ⊂ R2,
there exists a constant C > 0 such that

sup
(ui,vi)∈K,i=1,2

Eθ,τ

∣∣∣Γ 1
4
ε (u2, v2)− Γ

1
4
ε (u1, v1)

∣∣∣4 ≤ C[(u1 − u2)2 + (v1 − v2)4].

For detailed proof of this lemma, see Lemma 6.5 in Mishra and Prakasa Rao
[10].
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Proof of Theorem 4.2. As a consequence of Lemma 5.3, it follows that the fam-

ily of probability measures generated by the random fields {Γ
1
4
ε (u, v), (u, v) ∈

K} on C[K] with uniform topology is tight from the results in Billingsley [1]
(cf. Prakasa Rao [14]) and hence the family of probability measures generated
by the random fields {Lε(u, v), (u, v) ∈ K} on C[K] is tight.

As a consequence of lemmas derived above, it follows that the family of
probability measures generated by the random fields {Lε(u, v), (u, v) ∈ K} on
C[K] converge weakly to the probability measure generated by the random field
{L0(u, v), (u, v) ∈ K} on C[K] from the general theory of weak convergence of
probability measures on complete separable metric spaces (cf. Billingsley [1],
Parthasarathy [11], Prakasa Rao [14] and Ibragimov and Has’minskii [2]). This
completes the proof of Theorem 4.2. �

It remains to show that the maximum likelihood estimator (θ̂ε, τ̂ε) will lie
in a compact set K with probability tending to one as ε → 0 after suitable
normalizations of the components.

Lemma 5.4. Let Γε(u, v) = exp{Lε(u, v)}, u, v ∈ R. Then, for any compact
set K ⊂ R2 and for any 0 < p < 1, there exists a positive constant C such that

(5.4) sup
(u,v)∈K

Eθ,τ [(Γε(u, v))p] ≤ e−C g(u,v),

where g(u, v) = k1|u|2 + k2|v|2 for some k1 > 0 and k2 > 0.

Proof of this lemma is analogous to the proof of Lemma 6.7 in Mishra and
Prakasa Rao [9]. For details, see Lemma 6.7 in Mishra and Prakasa Rao [10].

Proof of Theorem 4.1. Let C[K] denote the family of continuous functions de-
fined on a compact set K in R. In view of Theorem 4.2, it follows that the
family of probability measures generated by the random fields {Lε(u, v), (u, v) ∈
K}, ε > 0 on C[K] converge weakly to the probability measure generated by the
random field {L0(u, v), (u, v) ∈ K} on C[K] as ε→ 0. Let (ûε, v̂ε) denote a point
at which the random field {Lε(u, v), (u, v) ∈ K} is maximum. Let (u0, v0) de-
note the location of the maxima of the process {L0(u, v), (u, v) ∈ K} on C[K].
The location (u0, v0) of the maxima is unique almost surely by the property of
Gaussian random fields. Since the random fields {Lε(u, v), (u, v) ∈ K}, ε > 0
on C[K] converge weakly to the random field {L0(u, v), (u, v) ∈ K} on C[K]
as ε → 0, by the continuous mapping theorem, it follows that the distribu-

tion of (τ̂ε, θ̂ε)) appropriately normalized converges in law to the distribution
of (u0, v0) by the continuous mapping theorem (cf. Billingsley [1]). Lemma

5.4 implies that the random variable (ûε, v̂ε) = (ε−2(τ̂ε − τ), ε−1(θ̂ε − θ)) ∈ K
with probability tending to one as ε→ 0. Applying arguments similar to those
in Theorem 10.1 in Chapter II, p. 103 of Ibragimov and Has’minskii [2] (cf.
Prakasa Rao [12]), we obtain the following result. Let (θ, τ) be the true pa-
rameter. As a consequence of the arguments and the discussion given above,

it follows that the random variable (ε−2(τ̂ε − τ), ε−1(θ̂ε − θ)) converges in law
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to the distribution of the random variable (u0, v0) which is the location of the
maximum of the random field {L0(u, v), (u, v) ∈ R}, as ε→ 0. �
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