• Title/Summary/Keyword: Fourier transform IR

Search Result 552, Processing Time 0.026 seconds

The study of quantitative analysis for noxious gases of plastic materials by remote sensing open path FT-IR spectrometer (원격 측정용 개방 경로형 FT-IR spectrometer를 사용하여 플라스틱 재료의 유해 가스 정량 분석에 관한 연구)

  • Cho, Nam-Wook;Cho, Won-Bo;Kim, Hyo-Jin
    • Analytical Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.230-235
    • /
    • 2012
  • It is to use many plastic materials as living essential goods. But when the fire is happened, owing to noxious gases, many men should be injured. Therefore as the noxious gases are measured by open path FT-IR spectrometer as remote monitoring, the demage of men could be minimized. Such this system consists of a Fourier transform spectrometer and infrared lamp fitted to long length. The study was to do the quantitative analysis on CO, $NO_2$, HCl, HF gas by remote monitoring open path FT-IR spectrometer. And the method of it should use MLR (multiple linearity regression) method. As result, It was confirmed to be more than 0.95 as $R^2$ of MLR. And then Urethane and PVC of plastic materials selected was burned, the concentration of polluted gases were measured by remote monitoring method.

IR Absorption Property in Nano-thick Nickel Silicides (저온에서 형성된 니켈실리사이드의 적외선 흡수 특성)

  • Han, Jeung-Jo;Song, Oh-Sung;Choi, Young-Youn
    • Korean Journal of Materials Research
    • /
    • v.19 no.4
    • /
    • pp.179-185
    • /
    • 2009
  • We fabricated thermally evaporated 30 nm-Ni/(20 nm or 60 nm)a-Si:H/Si films to investigate the energy-saving property of silicides formed by rapid thermal annealing (RTA) at temperatures of $350^{\circ}C$, $450^{\circ}C$, $550^{\circ}C$, and $600^{\circ}C$ for 40 seconds. A transmission electron microscope (TEM) and a high resolution X-ray diffractometer (HRXRD) were used to determine the cross-sectional microstructure and phase changes. A UVVIS-NIR and FT-IR (Fourier transform infrared spectroscopy) were employed for near-IR and middle-IR absorbance. Through TEM and HRXRD analysis, for the nickel silicide formed at low temperatures below $450^{\circ}C$, we confirmed columnar-shaped structures with thicknesses of $20{\sim}30\;nm$ that had ${\delta}-Ni^2Si$ phases. Regarding the nickel silicide formed at high temperatures above $550^{\circ}C$, we confirmed that the nickel silicide had more than 50 nm-thick columnar-shaped structures with a $Ni_{31}Si_{12}$ phase. Through UV-VIS-NIR analysis, nickel silicide showed almost the same absorbance in the near IR region as well as ITO. However, in the middle IR region, the nickel silicides with low temperature showed similar absorbance to those from high temperature silicidation.

Depolymerization of Kraft Lignin at Water-Phenol Mixture Solvent in Near Critical Region (물-페놀 혼합 용매의 근임계 하에서의 크래프트 리그닌의 저분자화)

  • Eom, Hee-Jun;Hong, Yoon-Ki;Chung, Sang-Ho;Park, Young-Moo;Lee, Kwan-Young
    • Journal of Energy Engineering
    • /
    • v.20 no.1
    • /
    • pp.36-43
    • /
    • 2011
  • Plant biomass has been proposed as an alternative source of petroleum-based chemical compounds. Especially, aromatic chemical compounds can be obtained from lignin by depolymerization processes because the lignin consist of complex aromatic materials. In this study, kraft lignin, the largest emitted substance among several kinds of lignin in Korea, was used as a starting material and was characterized by solid-state $^{13}C$-Muclear Magnetic Resonance($^{13}C$-NMR), Fourier Transform Infrared Spectroscopy(FT-IR), Elemental Analysis(EA). The depolymerization of kraft lignin was studied at water-phenol mixture solvent in near critical region and the experiments were conducted using a batch type reactor. The effects of water-to-phenol ratio and reaction temperature($300-400^{\circ}C$) were investigated to determine the optimum operating conditions. Additionally, the effects of formic acid as a hydrogen-donor solvent instead of $H_2$ gas were examined. The chemical species and quantities in the liquid products were analyzed using gas chromatography-mass spectroscopy(GC-MS), and solid residues(char) were analyzed using FT-IR. GC-MS analysis confirmed that the aromatic chemicals such as anisole, o-cresol(2-methylphenol), p-cresol(4-methylphenol), 2-ethylphenol, 4-ethylphenol, dibenzofuran, 3-methyl cabazole and xanthene were produced when phenol was added in the water as a co-solvent.

Preparation and Physical Properties of Eco-Friendly Biodegradable PLA/PBAT/HCO Blended Films (친환경 생분해성 PLA/PBAT/HCO 블랜드 필름 제조 및 물리적 특성)

  • Lee, Seung-Min;Kim, Han-Seong;Yun, Yeon-Hum;Hyung, Tae-Gyung;Yoon, Soon-Do
    • Applied Chemistry for Engineering
    • /
    • v.31 no.4
    • /
    • pp.416-422
    • /
    • 2020
  • In this study, eco-friendly biodegradable materials were prepared using poly(lactic acid) (PLA), poly(butylene adipate-co-terephthalate) (PBAT), and hydrogenated castor oil power (HCO) as an additive. The prepared PLA/PBAT/HCO blended films were characterized by the scanning electron microscope (SEM) and fourier-transform infrared spectroscopy (FT-IR). The results of SEM analysis indicated that PLA/PBAT (8 : 2) blended films added HCO showed no rough area, crack, or large agglomeration when compared with those adding various additives (12-hydroxy stearic acid (12HSA) and cellulose). The FT-IR results indicated the presence of specific peak of HCO in the PLA/PBAT blended films, and its peak intensity increased with increasing HCO content (0~5.0 wt%). Tensile strength, elongation at break, and water barrier and thermal properties of the prepared PLA/PBAT/HCO blended films were also investigated, indicating that the physical and thermal properties was improved more than three times by the addition of HCO. The biodegradability test in soil revealed that the prepared biodegradable materials were degraded by about 6.0~20% after 90 days.

Hair Strengthening Effect of Silane Coupling and Carbodiimide Chemistry (카르보디이미드 반응과 실란 커플링을 이용한 모발강화 효과)

  • Son, Seong Kil;Choi, Wonkyung;Lim, Byung Tack;Song, Sang-hun;Kang, Nae Kyu
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.2
    • /
    • pp.133-139
    • /
    • 2018
  • Chemically damaged hair is vulnerable to external stimuli in daily life due to the weakened physical properties of the hair strand itself. The purpose of this work was to determine whether chemical conjugation between hair keratin proteins restores tensile strength and thus results inpreventing further deterioration under repeated combing. A model damaged hair tress was produced by a typical perm-process. Then, it was internally crosslinked by the bifunctional crosslinker (3-aminopropyl)triethoxysilane (APTES), via both silane coupling and carbodiimide chemistry. Physical properties, including tensile strength, Young's modulus, and plateau stress, were measured to verify the effect of internal crosslinking, and the existence of crosslinking was verified by Fourier transform infrared (FT-IR) spectroscopy. The degrees of hair breakage and split ends were evaluated by repeated combing-drying tests. Physical properties of chemically damaged hair were restored by internal crosslinking. Successful crosslinking of APTES via both silane coupling and carbodiimide chemistry was verified by FT-IR spectra. Prevention of breakage and split ends after repeated combing with heat was observed. Human hair can be weakened by chemical damage including perm-processing, so restoring such properties is a major issue in the hair care industry. This work shows that internal crosslinking of damaged hair via chemical conjugation would be a potent method to restore the healthy hair.

Degradation Evaluation of PEM Water Electrolysis by Method of Degradation Analysis Used in PEMFC (고분자전해질 연료전지 열화 분석방법에 의한 PEM 수전해 열화 평가)

  • Oh, Sohyeong;Yang, Jinwon;Chu, Cheun-Ho;Na, Il-Chai;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.1-5
    • /
    • 2021
  • The PEM(Proton Exchange Membrane)water electrolysis uses the same PEM electrolyte membrane as the PEM fuel cell and proceeds by the same reaction but the opposite direction. The PEM fuel cell has many methods of degradation analysis since many studies have been conducted on the degradation and durability of the membrane and catalyst. We examined whether PEM fuel cell durability evaluation method can be applied to PEM electrolytic durability evaluation. During the PEM electrolytic degradation process, LSV(Linear sweep voltammetry), CV(Cyclic voltammetry), Impedance, SEM(Scanning Electron Microscope) and FT-IR(Fourier Transform Infrared spectroscopy) were analyzed and compared under the same conditions as the PEM fuel cell. As the PEM fuel cell, hydrogen passing through the membrane was oxidized at the Pt/C electrode, and the hydrogen permeation current density was measured to analyze the degree of degradation of the PEM membrane. Electrode degradation could be analyzed by measuring the electrode active area (ECSA) by CV under hydrogen/nitrogen flowing conditions. While supplying hydrogen and air to the Pt/C electrode and the IrO2 electrode, the impedance of each electrode was measured to evaluate the durability of the electrode and membrane.

The Study on the Precursor Adsorption using in-situ Nanoparticle-assisted Attenuated Total Reflectance Infrared Spectroscopy

  • Shin, Jae-Soo;Park, Myung-Su;Jung, Won-Jun;Park, Hee-Jung;Yun, Ju-Young;Kim, TaeWan;Kang, Sang-Woo
    • Applied Science and Convergence Technology
    • /
    • v.24 no.4
    • /
    • pp.90-95
    • /
    • 2015
  • The adsorption behavior of tris (dimethylamino)-cyclopentadienyl-zirconium (Cp-Zr) precursor using an in-situ attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FT-IR) was studied. In attempt to improve the detection intensity of an adsorbed precursor, nanoparticles were uniformly distributed on the Ge ATR crystal surface employing the spray method. The absorption characteristics studies were carried out over the Ge crystal temperature in the range of $30{\sim}50^{\circ}C$. Upon increasing the temperature, a reduction of absorption was observed. Based on the peak intensities of ATR-FT-IR spectroscopy, higher-$ZrO_2$ absorption efficiency occurs when the nano-particles are utilized compared to pure Ge crystal.

A Study on the Properties and Fabrication of Bulk Forming GeSe Based Chalcogenide Glass for Infrared Optical Lens (적외선 광학렌즈 제작을 위한 GeSe의 벌크 제작 및 특성 연구)

  • Bae, Dong-Sik;Yeo, Jong-Bin;Park, Jung-Hoo;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.9
    • /
    • pp.641-645
    • /
    • 2013
  • Chalcogenide glass has superior property of optical transmittance in the infrared region. Glass made using Ge-Se how many important optical applications. We have determined the composite formular of $Ge_{0.25}Se_{0.75}$ to be the GeSe chalcogenide glass composition appropriate for IR lenses. Also, the optical, thermal and physical characteristics of chalcogenide glass depended on the composition ratio. GeSe bulk sample is produced using the traditional melt-quenching method. The optical, structural, thermal and physical properties of the compound were measured by using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Differential scanning calorimeter (DSC), and Scanning electron microscope (SEM) respectively.

The Characteristics of Plasma Polymerized Carbon Hardmask Film Prepared by Plasma Deposition Systems with the Variation of Temperature

  • Yang, J.;Ban, W.;Kim, S.;Kim, J.;Park, K.;Hur, G.;Jung, D.;Lee, J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.381.1-381.1
    • /
    • 2014
  • In this study, we investigated the deposition behavior and the etch resistivity of plasma polymerized carbon hardmask (ppCHM) film with the variation of process temperature. The etch resistivity of deposited ppCHM film was analyzed by thickness measurement before and after direct contact reactive ion etching process. The physical and chemical properties of films were characterized on the Fourier transform infrared (FT-IR) spectroscope, Raman spectroscope, stress gauge, and ellipsometry. The deposition behavior of ppCHM process with the variation of temperature was correlated refractive index (n), extinction coefficient (k), intrinsic stress (MPa), and deposition rate (A/s) with the hydrocarbon concentration, graphite (G) and disordered (D) peak by analyzing the Raman and FT-IR spectrum. From this experiment we knew an optimal deposition condition for structure of carbon hardmask with the higher etch selectivity to oxide. It was shown the density of ppCHM film had 1.6~1.9 g/cm3 and its refractive index was 1.8~1.9 at process temperature, $300{\sim}600^{\circ}C$. The etch selectivity of ppCHM film was shown about 1:4~1:8 to undoped siliconoxide (USG) film (etch rate, 1300 A/min).

  • PDF

Direct Bonding Characteristics of 2 inch 3C-SiC Wafers for MEMS in Hash Environments (극한환경 MEMS용 2 inch 3C-SiC 기판의 직접접합 특성)

  • Chung, Yun-Sik;Ryu, Ji-Goo;Kim, Kyu-Hyun;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.387-390
    • /
    • 2002
  • SiC direct bonding technology is very attractive for both SiCOI(SiC-on-insulator) electric devices and SiC-MEMS(micro electro mechanical system) fields because of its application possibility in harsh environments. This paper presents pre-bonding techniques with variation of HF pre-treatment conditions for 2 inch SiC wafer direct bonding using PECVD(plasma enhanced chemical vapor deposition) oxide. The PECVD oxide was characterized by XPS(X-ray photoelectron spectrometer) and AFM(atomic force microscopy). The characteristics of the bonded sample were measured under different bonding conditions of HF concentration and an applied pressure. The bonding strength was evaluated by the tensile strength method. The bonded interface was analyzed by using IR camera and SEM(scanning electron microscope). Components existed in the interlayer were analyzed by using FT-IR(fourier transform infrared spectroscopy). The bonding strength was varied with HF pre-treatment conditions before the pre-bonding in the range of $5.3 kgf/cm^2$ to $15.5 kgf/cm^2$

  • PDF