References
- S. J. Barnes, Understanding plastic pollution: The role of economic development and technological research, Environ. Pollut., 249, 812-821 (2019). https://doi.org/10.1016/j.envpol.2019.03.108
- B. C. Almroth and H. Eggert, Marine plastic pollution: sources, impacts, and policy issues, Rev. Env. Econ. Policy, 13, 317-326 (2019). https://doi.org/10.1093/reep/rez012
- H. L. Frond, E. Sebille, J. M. Parnis, M. L. Diamond, N. Mallos, T. Kingsbury, and C. M. Rochman, Estimating the mass of chemicals associated with ocean plastic pollution to inform mitigation efforts, Integr. Environ. Assess. Manag., 15, 596-606 (2019). https://doi.org/10.1002/ieam.4147
- A. K. Mohanty, M. Misra, and G. Hinrichsen, Biofibres, biodegradable polymers and biocomposites: An overview, Macromol, Mater. Eng., 276/277, 2-15 (2000).
- R. A. Gross, and B. Kalra, Biodegradable polymers for environment, Science, 297, 803-807 (2002). https://doi.org/10.1126/science.297.5582.803
- R. Mohee, G. D. Unmar, A. Mudhoo, and P. Khadoo, Biodegradability of biodegradable/degradable plastic materials under aerobic and anaerobic conditions, Sci. Waste Manage., 28, 1624-1629 (2008). https://doi.org/10.1016/j.wasman.2007.07.003
- C. Bastioli, Biodegradable materials - present situation and future perspectives, Macromol. Symp., 135, 193-204 (1998).
- N. T. Paragkumar, D. Edith, and J. L. Six, Surface characteristics of PLA and PLGA films, Appl. Surf. Sci., 253, 2756-2764 (2006).
- E. Fortunati, I. Armentano, Q. Zhou, A. Iannoni, E. Saino, L. Visai, L. A. Berglund, and J. M. Kenny, Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles, Carbohydr. Polym., 87, 1596-1605 (2012). https://doi.org/10.1016/j.carbpol.2011.09.066
- N. Ljungberg and B. Wesslen, Preparation and properties of plasticized poly(lactic acid) films, Biomacromolecules, 6, 1789-1796 (2005). https://doi.org/10.1021/bm050098f
- K. Fukushima, M. H. Wu, S. Bocchini, A. Rasyida, and M. C. Yang, PBAT based nanocomposites for medical and industrial applications, Mater. Sci. Eng. C, 32, 1331-1351 (2012). https://doi.org/10.1016/j.msec.2012.04.005
- H. Wang, D. Wei, A. Zheng, and H. Xiao, Soil burial biodegradation of antimicrobial biodegradable PBAT films, Polym. Degrad. Stabil., 116, 14-22 (2015). https://doi.org/10.1016/j.polymdegradstab.2015.03.007
- D. Wei, H. Wang, Z. zizee, F. Chibante, A. Zheg, and H. Xiao, Non-leaching antimicrobial PBAT films through a facile and novel approach, Mater. Sci. Eng. C, 58, 986-991 (2016). https://doi.org/10.1016/j.msec.2015.09.023
- X. Yu, N. Wang, R. Zhang, and Z. Zhao, Simple synthesis hydrogenated castor oil fatty amide wax and its coating characterization, J. Oleo Sci., 66, 659-665 (2017). https://doi.org/10.5650/jos.ess16213
- M. G. Kulkarni and S. B. Sawant, Some physical properties of castor oil esters and hydrogenated castor oil esters, Eur. J. Lipid Sci. Technol., 105, 214-218 (2003). https://doi.org/10.1002/ejlt.200390043
- N. De Meirleir, L. Pellens, W. Broeckx, G. van Assche, and W De Malsche, The rheological properties of hydrogenated castor oil crystals, Colloid Polym. Sci., 292, 2539-2547 (2014). https://doi.org/10.1007/s00396-014-3298-5
- S. Y. Gu, K. Zhzng, J. Ren, and H. Zhan, Melt rheology of polylactide/ poly(butylene adipate-co-terephthalate) blends, Carbohydr. Polym., 74, 79-85 (2008). https://doi.org/10.1016/j.carbpol.2008.01.017
- K. Hamad, M. Kaseem, Y. G. Ko, and F. Deri, Biodegradable polymer blends and composites: An overview, Polym. Sci. Ser. A, 56, 812-829 (2014). https://doi.org/10.1134/S0965545X14060054
- W. Thongsong, C. Kulsettanchalee, and P. Threepopnatkul, Effect of polybutylene adipate-co-terephthalate on properties of polyethylene terephthalate thin films, Mater. Today Proc., 4, 6597-6604 (2017). https://doi.org/10.1016/j.matpr.2017.06.173
- F. Signori, M-B. Coltelli, and S. Bronco, Thermal degradation of poly(lactic acid)(PLA) and poly(butylene adipate-co-terephthalate) (PBAT) their blends upon melt processing, Polym. Degrad. Stabil., 94, 74-82 (2009). https://doi.org/10.1016/j.polymdegradstab.2008.10.004
- S. Y. Gu, K. Zhang, J. Ren, and H. Zhan, Melt rheology of polylactide/ poly(butylene adipate-co-terephthalate) blends, Carbohydr. Polym., 74, 79-85 (2008). https://doi.org/10.1016/j.carbpol.2008.01.017
- D. Ogunniyi, Castor oil: A vital industrial raw material, Bioresour. Technol., 97, 1086-1091 (2006). https://doi.org/10.1016/j.biortech.2005.03.028
- M. B. Coltelli, I. D. Maggiore, M. Bertoldo, F. Signori, S. Bronco, and F. Ciardelli, Poly(lactic acid) properties as a consequence of poly(butylene adipate-co-terephthalate) blending and acetyl tributyl citrate plasticization, J. Appl. Polym. Sci., 110, 1250-1262 (2008). https://doi.org/10.1002/app.28512
- J. Schneider, S. Manjure, and R. Narayan, Reactive modification and compatibilization of poly(lactide) and poly(butylene adipate-co-terephthalate) blends with epoxy functionalized-poly(lactide) for blown film applications, J. Appl. Polym. Sci., 133, 1-9 (2016).
- D. Gere and T. Czigany, Future trends of plastic bottle recycling: Compatibilization of PET and PLA, Polym. Test., 81, 1-10 (2020).
- Y. Li, L. Zhao, C. Han, and Y. Yu, Biodegradable blends of poly (butylene adipate-co-terephthalate) and stereocomplex polylactide with enhanced rheological, mechanical properties and thermal resistance, Colloid Polym. Sci., 298, 463-475 (2020). https://doi.org/10.1007/s00396-020-04636-1