Browse > Article
http://dx.doi.org/10.14478/ace.2020.1045

Preparation and Physical Properties of Eco-Friendly Biodegradable PLA/PBAT/HCO Blended Films  

Lee, Seung-Min (Department of Chemical and Biomolecular Engineering, Chonnam National University)
Kim, Han-Seong (Department of Chemical and Biomolecular Engineering, Chonnam National University)
Yun, Yeon-Hum (Geoconvergence Research Center, Chonnam National University)
Hyung, Tae-Gyung (Photochems)
Yoon, Soon-Do (Department of Chemical and Biomolecular Engineering, Chonnam National University)
Publication Information
Applied Chemistry for Engineering / v.31, no.4, 2020 , pp. 416-422 More about this Journal
Abstract
In this study, eco-friendly biodegradable materials were prepared using poly(lactic acid) (PLA), poly(butylene adipate-co-terephthalate) (PBAT), and hydrogenated castor oil power (HCO) as an additive. The prepared PLA/PBAT/HCO blended films were characterized by the scanning electron microscope (SEM) and fourier-transform infrared spectroscopy (FT-IR). The results of SEM analysis indicated that PLA/PBAT (8 : 2) blended films added HCO showed no rough area, crack, or large agglomeration when compared with those adding various additives (12-hydroxy stearic acid (12HSA) and cellulose). The FT-IR results indicated the presence of specific peak of HCO in the PLA/PBAT blended films, and its peak intensity increased with increasing HCO content (0~5.0 wt%). Tensile strength, elongation at break, and water barrier and thermal properties of the prepared PLA/PBAT/HCO blended films were also investigated, indicating that the physical and thermal properties was improved more than three times by the addition of HCO. The biodegradability test in soil revealed that the prepared biodegradable materials were degraded by about 6.0~20% after 90 days.
Keywords
Biodegradable PLA/PBAT blended films; Hydrogenated castor oil power; Physical properties; Thermal analysis; Biodegradability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. J. Barnes, Understanding plastic pollution: The role of economic development and technological research, Environ. Pollut., 249, 812-821 (2019).   DOI
2 B. C. Almroth and H. Eggert, Marine plastic pollution: sources, impacts, and policy issues, Rev. Env. Econ. Policy, 13, 317-326 (2019).   DOI
3 H. L. Frond, E. Sebille, J. M. Parnis, M. L. Diamond, N. Mallos, T. Kingsbury, and C. M. Rochman, Estimating the mass of chemicals associated with ocean plastic pollution to inform mitigation efforts, Integr. Environ. Assess. Manag., 15, 596-606 (2019).   DOI
4 A. K. Mohanty, M. Misra, and G. Hinrichsen, Biofibres, biodegradable polymers and biocomposites: An overview, Macromol, Mater. Eng., 276/277, 2-15 (2000).
5 R. A. Gross, and B. Kalra, Biodegradable polymers for environment, Science, 297, 803-807 (2002).   DOI
6 R. Mohee, G. D. Unmar, A. Mudhoo, and P. Khadoo, Biodegradability of biodegradable/degradable plastic materials under aerobic and anaerobic conditions, Sci. Waste Manage., 28, 1624-1629 (2008).   DOI
7 C. Bastioli, Biodegradable materials - present situation and future perspectives, Macromol. Symp., 135, 193-204 (1998).
8 N. T. Paragkumar, D. Edith, and J. L. Six, Surface characteristics of PLA and PLGA films, Appl. Surf. Sci., 253, 2756-2764 (2006).
9 E. Fortunati, I. Armentano, Q. Zhou, A. Iannoni, E. Saino, L. Visai, L. A. Berglund, and J. M. Kenny, Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles, Carbohydr. Polym., 87, 1596-1605 (2012).   DOI
10 N. Ljungberg and B. Wesslen, Preparation and properties of plasticized poly(lactic acid) films, Biomacromolecules, 6, 1789-1796 (2005).   DOI
11 K. Fukushima, M. H. Wu, S. Bocchini, A. Rasyida, and M. C. Yang, PBAT based nanocomposites for medical and industrial applications, Mater. Sci. Eng. C, 32, 1331-1351 (2012).   DOI
12 H. Wang, D. Wei, A. Zheng, and H. Xiao, Soil burial biodegradation of antimicrobial biodegradable PBAT films, Polym. Degrad. Stabil., 116, 14-22 (2015).   DOI
13 D. Wei, H. Wang, Z. zizee, F. Chibante, A. Zheg, and H. Xiao, Non-leaching antimicrobial PBAT films through a facile and novel approach, Mater. Sci. Eng. C, 58, 986-991 (2016).   DOI
14 X. Yu, N. Wang, R. Zhang, and Z. Zhao, Simple synthesis hydrogenated castor oil fatty amide wax and its coating characterization, J. Oleo Sci., 66, 659-665 (2017).   DOI
15 M. G. Kulkarni and S. B. Sawant, Some physical properties of castor oil esters and hydrogenated castor oil esters, Eur. J. Lipid Sci. Technol., 105, 214-218 (2003).   DOI
16 N. De Meirleir, L. Pellens, W. Broeckx, G. van Assche, and W De Malsche, The rheological properties of hydrogenated castor oil crystals, Colloid Polym. Sci., 292, 2539-2547 (2014).   DOI
17 S. Y. Gu, K. Zhzng, J. Ren, and H. Zhan, Melt rheology of polylactide/ poly(butylene adipate-co-terephthalate) blends, Carbohydr. Polym., 74, 79-85 (2008).   DOI
18 K. Hamad, M. Kaseem, Y. G. Ko, and F. Deri, Biodegradable polymer blends and composites: An overview, Polym. Sci. Ser. A, 56, 812-829 (2014).   DOI
19 W. Thongsong, C. Kulsettanchalee, and P. Threepopnatkul, Effect of polybutylene adipate-co-terephthalate on properties of polyethylene terephthalate thin films, Mater. Today Proc., 4, 6597-6604 (2017).   DOI
20 F. Signori, M-B. Coltelli, and S. Bronco, Thermal degradation of poly(lactic acid)(PLA) and poly(butylene adipate-co-terephthalate) (PBAT) their blends upon melt processing, Polym. Degrad. Stabil., 94, 74-82 (2009).   DOI
21 S. Y. Gu, K. Zhang, J. Ren, and H. Zhan, Melt rheology of polylactide/ poly(butylene adipate-co-terephthalate) blends, Carbohydr. Polym., 74, 79-85 (2008).   DOI
22 D. Ogunniyi, Castor oil: A vital industrial raw material, Bioresour. Technol., 97, 1086-1091 (2006).   DOI
23 M. B. Coltelli, I. D. Maggiore, M. Bertoldo, F. Signori, S. Bronco, and F. Ciardelli, Poly(lactic acid) properties as a consequence of poly(butylene adipate-co-terephthalate) blending and acetyl tributyl citrate plasticization, J. Appl. Polym. Sci., 110, 1250-1262 (2008).   DOI
24 J. Schneider, S. Manjure, and R. Narayan, Reactive modification and compatibilization of poly(lactide) and poly(butylene adipate-co-terephthalate) blends with epoxy functionalized-poly(lactide) for blown film applications, J. Appl. Polym. Sci., 133, 1-9 (2016).
25 D. Gere and T. Czigany, Future trends of plastic bottle recycling: Compatibilization of PET and PLA, Polym. Test., 81, 1-10 (2020).
26 Y. Li, L. Zhao, C. Han, and Y. Yu, Biodegradable blends of poly (butylene adipate-co-terephthalate) and stereocomplex polylactide with enhanced rheological, mechanical properties and thermal resistance, Colloid Polym. Sci., 298, 463-475 (2020).   DOI