Browse > Article
http://dx.doi.org/10.3740/MRSK.2009.19.4.179

IR Absorption Property in Nano-thick Nickel Silicides  

Han, Jeung-Jo (Department of Materials Science and Engineering, University of Seoul)
Song, Oh-Sung (Department of Materials Science and Engineering, University of Seoul)
Choi, Young-Youn (Department of Materials Science and Engineering, University of Seoul)
Publication Information
Korean Journal of Materials Research / v.19, no.4, 2009 , pp. 179-185 More about this Journal
Abstract
We fabricated thermally evaporated 30 nm-Ni/(20 nm or 60 nm)a-Si:H/Si films to investigate the energy-saving property of silicides formed by rapid thermal annealing (RTA) at temperatures of $350^{\circ}C$, $450^{\circ}C$, $550^{\circ}C$, and $600^{\circ}C$ for 40 seconds. A transmission electron microscope (TEM) and a high resolution X-ray diffractometer (HRXRD) were used to determine the cross-sectional microstructure and phase changes. A UVVIS-NIR and FT-IR (Fourier transform infrared spectroscopy) were employed for near-IR and middle-IR absorbance. Through TEM and HRXRD analysis, for the nickel silicide formed at low temperatures below $450^{\circ}C$, we confirmed columnar-shaped structures with thicknesses of $20{\sim}30\;nm$ that had ${\delta}-Ni^2Si$ phases. Regarding the nickel silicide formed at high temperatures above $550^{\circ}C$, we confirmed that the nickel silicide had more than 50 nm-thick columnar-shaped structures with a $Ni_{31}Si_{12}$ phase. Through UV-VIS-NIR analysis, nickel silicide showed almost the same absorbance in the near IR region as well as ITO. However, in the middle IR region, the nickel silicides with low temperature showed similar absorbance to those from high temperature silicidation.
Keywords
IR absorption; nickel silicide; low temperature; nano thickness; near IR;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 G. Makaka, E. L. Meyer and M. McPherson, Renewable Energy, 33, 1959 (2008)   DOI   ScienceOn
2 T. Stempel, M. Aggour, K. Skorupska, A. Munoz and H. J. Lewerenz, Electrochem. Commu., 10, 1184 (2008)   DOI   ScienceOn
3 B. Kongtragool, S. Wongwises, Sol. Energy, 82, 493 (2008)   DOI   ScienceOn
4 M. Nakazono, T. Hino, K. Zaitsu, J. Photochem. Photobio. A: Chem., 186, 99 (2007)   DOI   ScienceOn
5 R. M. Stanley, The Lesna Lighting Handbook, 9th ed., p.152, Illuminating Engineering, New York, U.S.A. (2000)
6 C. K. Ji, Kor. Inst. Illumin. Elec. Install. Eng., 15, 1 (2001)
7 A. Kondilis, E. Aperathitis and M. Modreanu, Thin Solid Films, 516, 8073 (2008)   DOI   ScienceOn
8 E. Hartmann, P. Boher, C. Defranoux, L. Jolivet and M. O. Martin, J. Lumin., 110, 407 (2004)   DOI   ScienceOn
9 J. W. Mayer, S. S. Lau, Electronic Materials Science : For Integrated Circuits in Si and GaAs, 1st ed., p.287-289, Macmillan Publishing Company, New York, U.S.A., (1990)
10 S. Y. Cho, M J. Lee, M. S. Kim, S. R. Lee, Y. K. Kim, D. H. Lee, C. W. Lee, K. H. Cho and J. H. Chung, J. Dermatological Sci., 50, 123 (2008)   DOI   ScienceOn
11 D. B. Williams, C. B. Carter, Transmission Electron Microscopy BasicsI, 1st ed., p.152-170, Plenum Press, New York, U.S.A., (1996)
12 K. J. Yoon, O. S. Song and J. J. Han, J. Kor. Inst. Met. Mater., 46, 11 (2008)