• Title/Summary/Keyword: Foundation reinforcement method

Search Result 137, Processing Time 0.027 seconds

Stability Analysis of the Reinforced Embankment on Soft Foundations using the Limit Equilibrium Method (한계평형법에 의한 연약지반 보강성토의 안정해석)

  • 고남영;고홍석
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.5
    • /
    • pp.101-110
    • /
    • 1995
  • The use of geotextile as reinforced materials in Soil structures has become widespread throughout the world. Geotextile reinforcement has been used in retaining walls, slope of embankment and especially soft foundation, etc. In the past, however, its design and construction have been performed empirically. In this study, to investigate of the effect of geotextiles reinforced slope of the embankment on a very soft foundation, a limit equilibrium analysis program calculating the safety factor of embankment on very soft foundation was developed. The study was focussed on such factors as type of geotextile, tensile strength, amount of reinforcement, and inclination of embankment. And the 4imit equilibrium analysis program was written on the basis of Low's slope stability theory with some modification. The following conclusions were drawn from this study. (1) The orientation of reinforcement can be assumed either horizontal or tangential to the slip circle. The factor of safety with tangential reinforcement is larger than that with the horizontal reinforcement. (2) In general, the factor of safety increases, as the slope reduces. However, it is preferable to use geotextiles with higher tensile strength rather than to reduce the slope of the embankment, because it is difficult to adjust the slope as desired. (3) The factor of safety obtained by numerical computation is affected only by the tensile strength, but not by the type of the geotextile.

  • PDF

Novel quasi 3D theory for mechanical responses of FG-CNTs reinforced composite nanoplates

  • Alazwari, Mashhour A.;Daikh, Ahmed Amine;Eltaher, Mohamed A.
    • Advances in nano research
    • /
    • v.12 no.2
    • /
    • pp.117-137
    • /
    • 2022
  • Effect of thickness stretching on free vibration, bending and buckling behavior of carbon nanotubes reinforced composite (CNTRC) laminated nanoplates rested on new variable elastic foundation is investigated in this paper using a developed four-unknown quasi-3D higher-order shear deformation theory (HSDT). The key feature of this theoretical formulation is that, in addition to considering the thickness stretching effect, the number of unknowns of the displacement field is reduced to four, and which is more than five in the other models. Two new forms of CNTs reinforcement distribution are proposed and analyzed based on cosine functions. By considering the higher-order nonlocal strain gradient theory, microstructure and length scale influences are included. Variational method is developed to derive the governing equation and Galerkin method is employed to derive an analytical solution of governing equilibrium equations. Two-dimensional variable Winkler elastic foundation is suggested in this study for the first time. A parametric study is executed to determine the impact of the reinforcement patterns, nonlocal parameter, length scale parameter, side-t-thickness ratio and aspect ratio, elastic foundation and various boundary conditions on bending, buckling and free vibration responses of the CNTRC plate.

A Study on Displacement Effect of Different Foundation using Concrete and Rubble (콘크리트, 잡석에 의한 이질기초 치환효과에 관한 연구)

  • Lim, Hae-Sik;Park, Yong-Boo
    • Land and Housing Review
    • /
    • v.2 no.2
    • /
    • pp.189-194
    • /
    • 2011
  • To reinforce bearing capacity-changed section or different foundation in the same building, empirical or simple tools have been used. To solve this problem, we suggest the analytical solution that can evaluate and reinforce the stability of foundation. To estimate the effect of reinforcement by replacement in different foundation, soil stiffness evaluation method taking into account the influence factor with respect to depth beneath the foundation need to be applied. In this paper, graphs and relevant formulae are suggested to calculate equivalent soil reaction coefficient showing the effect of reinforcement by crushed stone and lean concrete replacement.

Effectiveness of Reinforcement by Geogrid & Pile in Soft Clay (지오그리드와 말뚝에 의한 연약지반 보강효과)

  • 신은철;이상혁;이명원
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.09a
    • /
    • pp.61-69
    • /
    • 2000
  • It is not easy to find a good soil condition due to the shortage of suitable land for construction work. The earth structure and buildings can be constructed over the soft soil. The soft soil must be treated either using the reinforcement element or dewatering. Most of land reclamation projects are being implemented along the south coast or west coast of the Korean Peninsula. The soils in these areas are covered with the soft marine clay, so soil and site improvement is the most important things to do. Pile foundation at the bottom of embankment can be constructed either in the soft ground or in the soil contaminated area. The purpose of this research is to develop "geogrid-reinforced piled embankment method" to prevent the differential settlement and increase the bearing capacity of soil. In this study, the effectiveness of the geogrid-reinforcement was studied by varying the space between piles and reinforcement conditions. Also, the geotechnical engineering properties of the embankment material and foundation soil were determined through the laboratory tests as well as the field tests. As a result, the site that the pile-spacing S = 3b with geogrid reinforcement is the most effective to reduce the differential settlement and increase load bearing capacity.

  • PDF

Foundation Design of Apartment Buildings considering Upper Structure Stiffness (상부구조물강성을 고려한 아파트 건축물의 기초판 설계 방법)

  • Lee, Kyung-Koo;Park, Hong-Gun;Noh, Jung-Tae;Lee, Sang-Hyun;Chung, Lan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.113-114
    • /
    • 2009
  • The efficient foundation design of apartment buildings needs to include the effect of upper structure on foundation behavior. In this study, a foundation design method effectively considering upper structure stiffness using finite element analysis program is proposed. The analytical study showed that the proposed method reduces the allowable soil pressure under foundation and the amount of reinforcement as well as concrete for foundation.

  • PDF

Study on the Effectiveness of Preloading Method on Reinforcement of the Pile Foundation by 3D FEM Analysis (3차원 수치해석을 이용한 공동주택 수직증축용 기초 보강 선재하공법 효과 분석)

  • Wang, Cheng-Can;Han, Jin-Tae;Jang, Young-Eun;Ha, Ik-Soo;Kim, Seok-Jung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.1
    • /
    • pp.47-57
    • /
    • 2018
  • In recent years, vertical extension remodeling of apartment building is considered as one of the efficient ways to broaden and enhance the utilization of existing buildings due to the rapid development of population and decrement of land resources. The reinforcement of foundation is of great importance to bearing the additional load caused by the added floors. However, because of the additional load, the carried load by the existing piles would be in excess of its allowable bearing capacity. In this study, a conceptual construction method called preloading method was presented. The preloading method applies force onto the reinforcing pile before vertical extension construction. The purpose of preloading is to transfer partial load applied on the existing piles to reinforcing piles in order to keep each pile not exceeding the allowable capacity and to mobilize resistance of reinforcing pile by developing relative settlement. The feasibility and effect of preloading method was investigated by using finite numerical method. Two simulation models, foundation reinforcement with preloading and without preloading, were developed through PLAXIS 3D program. Numerical results showed that the presented preloading method is capable of sharing partial carried load of existing pile and develops the mobilization of reinforcing pile's frictional resistance.

Application of D-ROG technology for restoration of the subsided building (침하건물 복원을 위한 정밀 다점 주입공법의 적용)

  • Lee, Ju-Hyung;Koh, Hyo-Seog;Hong, Jin-Pyo;Park, Jae-Hyun;Cho, Sam-Deok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.405-410
    • /
    • 2009
  • This paper presents a case study that achieved both of serviceability and safety of the building through soil reinforcement and restoration around foundations subjected to serious differential settlement using D-ROG method. The building which has one basement floor and three ground floors is founded on soft ground and differential settlement occurred to the maximum extent of 678mm. The foundation type of the building is a independent mat foundation. Soil profiles consist of landfill layer, alluvial layer, weathered rock, and soft rock. The bearing layer consisting of gravel and weathered rock is located 16.0~17.0m below the bottom of the building. As a result of soil reinforcement and restoration, the recovery ratio of more than 90% can be attained with the maximum set-up of 657mm.

  • PDF

Instrumentations for the Behaviour Observation of the Geotextile on Marine Clayey Grounds (해성점토지반에 설치된 지오텍스타일의 거동 관측을 위한 계측)

  • 조성민;장용채
    • Journal of Korean Port Research
    • /
    • v.14 no.4
    • /
    • pp.463-473
    • /
    • 2000
  • Reinforcement with geotextiles have been used in the foundation soil to enhance the resistance of embankments to avoid failure through excessive deformation or shear in the foundation. It is improtant to know the amount of the strain and the displacement of buried geotextiles for the verification of the reinforcement behaviour. Full scale trial constructions were performed to check the deformational characteristics of the polyester(PET) mat which was used for the embankment reinforcement. Many instrumentation equipments including surface settlement plates, profile gauges and inclinometer casings were installed to observe the behaviour of the soft ground due to the soil embankment. 60 electrical resistance strain gauges and 9 vibrating wire LVDTs were installed 세 measure the deformation of the polyester mat. Results of various tests and geotextile, waterproofing and protection from the hazard environments were introduced. The proposed instrumentation method was effective for the monitoring or the geotextile behaviour. The direct attachment of electrical resistance strain gauges on the gertextile mat was able to measure small changes of the strain of geotextiles. At the end of the 5 month monitoring, 54 of 60 (93%) strain gauges and 7 of 9 (78%) displacement transducers survived all perils of the compaction impacts and the humidity. And the tensile strain of grotextiles increased as the ground displacement became larger. Though the observed strain of mats under the 3m high embankment load was less than 1%, the magnitudes of the strain according to the mat spreading method were different from each other.

  • PDF

The Analysis of Bearing Capacity Behavior of Strip Footing on Geogrid-Reinforced Sand over a Soft Clay by Numerical Method (수치해석방법에 의한 연약지반위의 보강띠기초의 지지력거동해석)

  • Kim, Young-Min;Kang, Seong-Gwi
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.3
    • /
    • pp.1-7
    • /
    • 2009
  • Earth reinforcement by using geogrids as reinforcing materials are widely applied to several earth structures. The bearing capacity of geogrid reinforced foundation soils is usually examined on based on the rigid plasticity theory or Limit Equilibrium Method. Method of analysis such Limit Equilibrium Method provide no detail information about failure behaviour or strain which develop in the reinforcement or foundation. In this paper the analysis of failure behaviour of strip footing on geogrid-reinforced sand over a soft caly was investigated by using a numerical method. A series of finite element analyses were performed on a geogrid-reinforced strip footing over a soft clay including number of geogrid layers, length, depth. We effectively investigated the failure behaviour and improvement of bearing capacity on the reinforced foundation soil by using FEM program.

  • PDF

Numerical Evaluation of Behavior on Bridge Foundation Reinforced by Battered Micropiles (경사진 마이크로파일로 보강된 교량기초의 거동에 관한 수치 해석적 연구)

  • Jung, Dong-Jin;Park, Seong-Wan;Kwak, Ki-Seok;Lee, Ju-Hyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.514-519
    • /
    • 2006
  • The purpose of this study is to evaluate the performance of existing bridge foundation reinforced by battered micropiles. In order to do numerical method using a Finite element program was used to predict the micropile behavior and quantify their reinforcing effect to existing bridge foundations. In addition, effect of battered micropiles on existing foundations was compared with vertically reinforced bridge foundations. Based on the study performed, it was found that the use of battered micropile is more efficiently reducing displacement of existing foundation than vertically installed micropiles under vertical and horizontal loadings respectively. The batter angle of micropile was also found effective about $15^{\circ}\sim20^{\circ}$ to reduce the vortical displacement. The horizontal reinforcement effect is continuously larger with an increase in batter angle. So, it is believed that the results presented could give an idea to enhance in-service performance of existing bridge foundations reinforced by micropiles.

  • PDF