DOI QR코드

DOI QR Code

Novel quasi 3D theory for mechanical responses of FG-CNTs reinforced composite nanoplates

  • Alazwari, Mashhour A. (Faculty of Engineering, Mechanical Engineering Department, King Abdulaziz University) ;
  • Daikh, Ahmed Amine (Department of Technology, University Centre of Naama) ;
  • Eltaher, Mohamed A. (Faculty of Engineering, Mechanical Engineering Department, King Abdulaziz University)
  • Received : 2021.06.12
  • Accepted : 2021.11.08
  • Published : 2022.02.25

Abstract

Effect of thickness stretching on free vibration, bending and buckling behavior of carbon nanotubes reinforced composite (CNTRC) laminated nanoplates rested on new variable elastic foundation is investigated in this paper using a developed four-unknown quasi-3D higher-order shear deformation theory (HSDT). The key feature of this theoretical formulation is that, in addition to considering the thickness stretching effect, the number of unknowns of the displacement field is reduced to four, and which is more than five in the other models. Two new forms of CNTs reinforcement distribution are proposed and analyzed based on cosine functions. By considering the higher-order nonlocal strain gradient theory, microstructure and length scale influences are included. Variational method is developed to derive the governing equation and Galerkin method is employed to derive an analytical solution of governing equilibrium equations. Two-dimensional variable Winkler elastic foundation is suggested in this study for the first time. A parametric study is executed to determine the impact of the reinforcement patterns, nonlocal parameter, length scale parameter, side-t-thickness ratio and aspect ratio, elastic foundation and various boundary conditions on bending, buckling and free vibration responses of the CNTRC plate.

Keywords

Acknowledgement

The Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, Saudi Arabia has funded this project, under grant No. (FP-129-43).

References

  1. Abdelrahman, A.A., Esen, I., O zarpa, C. and Eltaher, M.A. (2021), "Dynamics of perforated nanobeams subject to moving mass using the nonlocal strain gradient theory", Appl. Math. Modell., 96, 215-235. https://doi.org/10.1016/j.apm.2021.03.008.
  2. Abo-Bakr, R.M., Eltaher, M.A. and Attia, M.A. (2020), "Pull-in and freestanding instability of actuated functionally graded nanobeams including surface and stiffening effects", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-020-01146-0.
  3. Abualnour, M., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates", Compos. Struct., 184, 688-697. http://doi.org/10.1016/j.compstruct.2017.10.047.
  4. Akbas, S.D., Fageehi, Y.A., Assie, A.E. and Eltaher, M.A. (2020), "Dynamic analysis of viscoelastic functionally graded porous thick beams under pulse load", Eng. Comput., 1-13. https://doi.org/10.1007/s00366-020-01070-3.
  5. Alazwari, M.A., Daikh, A.A., Houari, M.S.A., Tounsi, A. and Eltaher, M.A. (2021), "On static buckling of multilayered carbon nanotubes reinforced composite nanobeams supported on non-linear elastic foundations", Steel Compos. Struct., 40(3), 389-404. http://doi.org/10.12989/scs.2021.40.3.389.
  6. Alibeigloo, A. (2018), "Coupled thermoelasticity analysis of carbon nano tube reinforced composite rectangular plate subjected to thermal shock", Compos. Part B Eng., 153, 445-455. https://doi.org/10.1016/j.compositesb.2018.09.003.
  7. Amiri, A., Mohammadimehr, M. and Anvari, M. (2020), "Stress and buckling analysis of a thick-walled micro sandwich panel with a flexible foam core and carbon nanotube reinforced composite (CNTRC) face sheets", Appl. Math. Mech., 41(7), 1027-1038. https://doi.org/10.1007/s10483-020-2627-7.
  8. Bekhadda, A., Cheikh, A., Bensaid, I., Hadjoui, A. and Daikh, A.A. (2019), "A novel first order refined shear-deformation beam theory for vibration and buckling analysis of continuously graded beams", Adv. Aircr. Spacecr. Sci., 6(3), 189-206. https://doi.org/10.12989/aas.2019.6.3.189.
  9. Ghorbanpour-Arani, A., Kolahdouzan, F. and Abdollahian, M. (2018), "Nonlocal buckling of embedded magnetoelectroelastic sandwich nanoplate using refined zigzag theory", Appl. Math. Mech., 39(4), 529-546. https://doi.org/10.1007/s10483-018-2319-8.
  10. Arshid, E., Arshid, H., Amir, S. and Mousavi, S.B. (2021), "Free vibration and buckling analyses of FG porous sandwich curved microbeams in thermal environment under magnetic field based on modified couple stress theory", Arch. Civil Mech. Eng., 21(1), 1-23. https://doi.org/10.1007/s43452-020-00150-x.
  11. Belarbi, O.M., Houari, M.S.A., HIRANE, H. and Daikh, A.A. (2020), "An efficient nonlocal finite element model for the bending and buckling analysis of functionally graded nanobeams using a novel parabolic shear deformation theory", Compos. Struct., 264, 113712. https://doi.org/10.1016/j.compstruct.2021.113712.
  12. Bensaid, I. (2017), "A refined nonlocal hyperbolic shear deformation beam model for bending and dynamic analysis of nanoscale beams", Adv. Nano Res., 5(2), 113-126. http://doi.org/10.12989/anr.2017.5.2.113.
  13. Bouazza, M., Kenouza, Y., Benseddiq, N. and Zenkour, A. M. (2017), "A two-variable simplified nth-higher-order theory for free vibration behavior of laminated plates", Compos. Struct., 182, 533-541. http://doi.org/10.1016/j.compstruct.2017.09.041.
  14. Daikh, A.A. (2019), "Temperature dependent vibration analysis of functionally graded sandwich plates resting on Winkler/Pasternak/Kerr foundation", Mater. Res. Express., 6, 065702. https://doi.org/10.1088/2053-1591/ab097b.
  15. Daikh, A.A., Drai, A., Houari M.S.A. and Mohamed A. Eltaher. (2020a), "Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes", Steel Compos. Struct., 36(6), 643-656. https://doi.org/10.12989/scs.2020.36.6.643.
  16. Daikh, A.A., Bachiri, A., Houari, M.S.A. and Tounsi. (2020b), "Size dependent free vibration and buckling of multilayered carbon nanotubes reinforced composite nanoplates in thermal environment", Mech. Based Des. Struct., 1-29. https://doi.org/10.1080/15397734.2020.1752232.
  17. Daikh, A.A., Houari, M.S.A. and Eltaher. M.A. (2020c), "A novel nonlocal strain gradient Quasi-3D bending analysis of sigmoid functionally graded sandwich nanoplates", Compos. Struct., 113347. https://doi.org/10.1016/j.compstruct.2020.113347.
  18. Daikh, A.A., Houari, M.S.A. and Eltaher, M.A. (2021a), "A novel nonlocal strain gradient Quasi-3D bending analysis of sigmoid functionally graded sandwich nanoplates", Compos. Struct., 262, 113347. https://doi.org/10.1016/j.compstruct.2020.113347.
  19. Daikh, A.A., Houari, M.S.A., Belarbi, M.O., Chakraverty, S. and Eltaher, M.A. (2021b), "Analysis of axially temperature-dependent functionally graded carbon nanotube reinforced composite plates", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-021-01413-8.
  20. Daikh, A.A., Houari, M.S.A., Karami, B., Eltaher, M.A., Dimitri, R. and Tornabene, F. (2021c), "Buckling analysis of CNTRC curved sandwich nanobeams in thermal environment", Appl. Sci., 11(7), 3250. https://doi.org/10.3390/app11073250.
  21. Daikh, A.A., Houari, M.S.A., Belarbi, M.O., Mohamed, S.A. and Eltaher, M.A. (2021d), "Static and dynamic stability responses of multilayer functionally graded carbon nanotubes reinforced composite nanoplates via quasi 3D nonlocal strain gradient theory", Defence Technol., In Press. https://doi.org/10.1016/j.dt.2021.09.011.
  22. Daikh, A.A., Houari, M.S.A., Belarbi, M.O. Chakraverty, S. and Eltaher, M.A. (2021e), "Analysis of axially temperature-dependent functionally graded carbon nanotube reinforced composite plates", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-021-01413-8.
  23. Ebrahimi, F. and Barati, A.F. (2016), "Analytical solution for nonlocal buckling characteristics of higher-order inhomogeneous nanosize beams embedded in elastic medium", Adv. Nano Res., 4(3), 229-249. http://doi.org/10.12989/anr.2016.4.3.229.
  24. Ehyaei, J., Akbarshahi, A., and Shafiei, N. (2017), "Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam", Adv. Nano Res., 5(2), 141-169. http://doi.org/10.12989/anr.2017.5.2.141.
  25. Eltaher, M.A., El-Borgi, S. and Reddy, J.N. (2016a), "Nonlinear analysis of size-dependent and material-dependent nonlocal CNTs", Compos. Struct., 153, 902-913. https://doi.org/10.1016/j.compstruct.2016.07.013.
  26. Eltaher, M.A., Khater, M.E., Park, S., Abdel-Rahman, E. and Yavuz M. (2016b), "On the static stability of nonlocal nanobeams using higher-order beam theories", Adv. Nano Res., 4(1), 51-64. http://doi.org/10.12989/anr.2016.4.1.051.
  27. Eltaher, M.A., Agwa, M. and Kabeel, A. (2018), "Vibration analysis of material size dependent CNTs using energy equivalent model", J. Appl. Computat. Mech., 4(2), 75-86. https://doi.org/10.1016/j.compositesb.2018.09.003
  28. Eltaher, M.A. and Mohamed, N. (2020), "Nonlinear stability and vibration of imperfect CNTs by doublet mechanics", Appl. Math. Computat., 382, 125311. https://doi.org/10.1016/j.amc.2020.125311.
  29. Eltaher, M.A., Abdelrahman, A.A. and Esen, I. (2021), "Dynamic analysis of nanoscale Timoshenko CNTs based on doublet mechanics under moving load", Eur. Phys. J. Plus, 136(7), 1-21. https://doi.org/10.1140/epjp/s13360-021-01682-8.
  30. Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
  31. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-10. https://doi.org/10.1063/1.332803.
  32. Esen, I., Abdelrhmaan, A.A. and Eltaher, M.A. (2021a), "Free vibration and buckling stability of FG nanobeams exposed to magnetic and thermal fields", Eng. Comput., 1-20. https://doi.org/10.1007/s00366-021-01389-5.
  33. Esen, I., Daikh, A.A. and Eltaher, M.A. (2021b), "Dynamic response of nonlocal strain gradient FG nanobeam reinforced by carbon nanotubes under moving point load", Eur. Phys. J. Plus, 136(4), 1-22. https://doi.org/10.1140/epjp/s13360-021-01419-7.
  34. Esen, I., Abdelrahman, A.A. and Eltaher, M.A. (2021), "On vibration of sigmoid/symmetric functionally graded nonlocal strain gradient nanobeams under moving load", Int. J. Mech. Mater. Des., 1-22. https://doi.org/10.1007/s10999-021-09555-9.
  35. Garg, A., Chalak, H.D., Belarbi, M.O., Zenkour, A.M. and Sahoo, R. (2021), "Estimation of carbon nanotubes and their applications as reinforcing composite materials-an engineering review", Compos. Struct., 114234. https://doi.org/10.1016/j.compstruct.2021.114234.
  36. Ghassabi, M., Zarastvand, M.R. and Talebitooti, R. (2020), "Investigation of state vector computational solution on modeling of wave propagation through functionally graded nanocomposite doubly curved thick structures", Eng. Comput., 36(4), 1417-1433. https://doi.org/10.1007/s00366-019-00773-6.
  37. Ghobadi, A., Beni, Y.T. and Zur, K.K. (2021), "Porosity distribution effect on stress, electric field and nonlinear vibration of functionally graded nanostructures with direct and inverse flexoelectric phenomenon", Compos. Struct., 259, 113220. https://doi.org/10.1016/j.compstruct.2020.113220.
  38. Gholami, R. and Ansari, R. (2018), "The effect of initial geometric imperfection on the nonlinear resonance of functionally graded carbon nanotube-reinforced composite rectangular plates", Appl. Math. Mech., 39(9), 1219-1238. https://doi.org/10.1007/s10483-018-2367-9.
  39. Han, Y., and Elliott, J. (2007), "Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites", Computat. Mater. Sci., 39(2), 315-323. https://doi.org/10.1016/j.commatsci.2006.06.011.
  40. Hamed, M.A., Mohamed, S.A. and Eltaher, M.A. (2020), "Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads", Steel Compos. Struct., 34(1), 75-89. https://doi.org/10.12989/scs.2020.34.1.075.
  41. Hussain, M., Naeem, M.N. and Tounsi, A. (2020a), "Response of orthotropic Kelvin modeling for single-walled carbon nanotubes: Frequency analysis", Adv. Nano Res., 8(3), 229-244. https://doi.org/10.12989/anr.2020.8.3.229.
  42. Hussain, M., Naeem, M.N., Asghar, S. and Tounsi, A. (2020b), "Theoretical impact of Kelvin's theory for vibration of double walled carbon nanotubes", Adv. Nano Res., 8(4), 307-322. https://doi.org/10.12989/anr.2020.8.4.307.
  43. Karami, B., Shahsavari, D. and Janghorban, M. (2018), "A comprehensive analytical study on functionally graded carbon nanotube-reinforced composite plates", Aerosp. Sci. Technol., 82, 499-512. https://doi.org/10.1016/j.ast.2018.10.001.
  44. Kolahdouzan, F., Mosayyebi, M., Ghasemi, F.A., Kolahchi, R. and Panah, S.R.M. (2020), "Free vibration and buckling analysis of elastically restrained FG-CNTRC sandwich annular nanoplates", Adv. Nano Res., 9(4), 237-250. http://doi.org/10.12989/anr.2020.9.4.237.
  45. Li, X., Song, M., Yang, J. and Kitipornchai, S. (2019), "Primary and secondary resonances of functionally graded graphene platelet-reinforced nanocomposite beams", Nonlinear Dynam., 95(3), 1807-1826. https://doi.org/10.1007/s11071-018-4660-9.
  46. Li, M., Soares, C.G. and Yan, R. (2021), "Free vibration analysis of FGM plates on Winkler/Pasternak/Kerr foundation by using a simple quasi-3D HSDT", Compos. Struct., 264, 113643. https://doi.org/10.1016/j.compstruct.2021.113643.
  47. Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solid, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
  48. Melaibari, A., Abo-bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2020), "Static stability of higher order functionally graded beam under variable axial load", Alexandria Eng. J., 59(3), 1661-1675. https://doi.org/10.1016/j.aej.2020.04.012.
  49. Qaderi, S. and Ebrahimi, F. (2020), "Vibration analysis of polymer composite plates reinforced with graphene platelets resting on two-parameter viscoelastic foundation", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-020-01066-z.
  50. Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719.
  51. Sahmani, S., Safaei, B. and Aldakheel, F. (2021), "Surface elastic-based nonlinear bending analysis of functionally graded nanoplates with variable thickness", Eur. Phys. J. Plus, 136(6), 1-28. https://doi.org/10.1140/epjp/s13360-021-01667-7.
  52. Sari, M.S., Ghaffari, S., Ceballes, S. and Abdelkefi, A. (2020), "Buckling response of functionally graded nanoplates under combined thermal and mechanical loadings", J. Nanopart. Res., 22(4), 1-21. https://doi.org/10.1007/s11051-020-04815-9.
  53. Selim, B.A., Liu, Z. and Liew, K.M. (2019), "Active vibration control of functionally graded graphene nanoplatelets reinforced composite plates integrated with piezoelectric layers", Thin Walled Struct., 145, 106372. https://doi.org/10.1016/j.tws.2019.106372.
  54. Shaban, M. and Mazaheri, H. (2021), "Bending analysis of five-layer curved functionally graded sandwich panel in magnetic field: closed-form solution", Appl. Math. Mech., 42(2), 251-274. https://doi.org/10.1007/s10483-021-2675-7.
  55. Shakouri, M. and Mohseni, A. (2020), "Buckling analysis of rectangular sandwich plates with functionally graded graphene-reinforced face layers", J. Brazil. Soc. Mech. Sci. Eng., 42(10), 1-11. https://doi.org/10.1007/s40430-020-02620-y.
  56. Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026.
  57. Shojaee, M., Setoodeh, A.R. and Malekzadeh, P. (2017), "Vibration of functionally graded CNTs-reinforced skewed cylindrical panels using a transformed differential quadrature method", Acta Mech., 228(7), 2691-2711. https://doi.org/10.1007/s00707-017-1846-z.
  58. Singh, P.P. and Azam, M.S. (2021), "Size dependent vibration of embedded functionally graded nanoplate in hygrothermal environment by Rayleigh-Ritz method", Adv. Nano Res., 10(1), 25-42. https://doi.org/10.12989/anr.2021.10.1.025.
  59. Thai, C.H., Ferreira, A.J.M., Nguyen-Xuan, H., Nguyen, L.B. and Phung-Van, P. (2021), "A nonlocal strain gradient analysis of laminated composites and sandwich nanoplates using meshfree approach", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-021-01501-9.
  60. Thai, H.T., Nguyen, T.K., Vo, T.P., Lee, J. (2014), "Analysis of functionally graded sandwich plates using a new first-order shear deformation theory", Eur. J. Mech. A Solid, 45, 211-25. https://doi.org/10.1016/j.euromechsol.2013.12.008.
  61. Touloukian, Y.S. (1967), Thermophysical Properties of High Temperature Solid Materials, MacMillan, London, U.K.
  62. Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y.
  63. Van Vinh, P. and Huy, L.Q. (2021), "Finite element analysis of functionally graded sandwich plates with porosity via a new hyperbolic shear deformation theory", Defence Technol., In Press. https://doi.org/10.1016/j.dt.2021.03.006.
  64. Wattanasakulpong, N., Chaikittiratana, A. (2015, "Exact solutions for static and dynamic analyses of carbon nanotube-reinforced composite plates with Pasternak elastic foundation", Appl. Math. Modell., 39, 5459-5472. https://doi.org/10.1016/j.apm.2014.12.058.
  65. Yayli, M.O . (2015a), "Buckling analysis of a rotationally restrained single walled carbon nanotubes", Acta Physica Pol. A, 127(3), 678-683. https://doi.org/10.12693/APhysPolA.127.678.
  66. Yayli, M.O . (2015b), "Stability analysis of gradient elastic microbeams with arbitrary boundary conditions", J. Mech. Sci. Technol., 29, 3373-3380. https://doi.org/10.1007/s12206-015-0735-4.
  67. Yayli, M.O . (2016), "An efficient solution method for the longitudinal vibration of nanorods with arbitrary boundary conditions via a hardening nonlocal approach", J. Vib. Control, 24(11), 2230-2246. https://doi.org/10.1177/1077546316684042.
  68. Yayli, M.O . (2018a), "On the torsional vibrations of restrained nanotubes embedded in an elastic medium", J. Brazil. Soc. Mech. Sci. Eng., 40, 419. https://doi.org/10.1007/s40430-018-1346-7.
  69. Yayli, M.O . (2018b), "Torsional vibrations of restrained nanotubes using modified couple stress theory", Microsyst. Technol., 24(8), 3425-3435. https://doi.org/10.1007/s00542-018-3735-3.
  70. Yayli, M.O . (2018c), "Torsional vibration analysis of nanorods with elastic torsional restraints using non-local elasticity theory", Micro Nano Lett., 13(5), 595-599. https://doi.org/10.1049/mnl.2017.0751.
  71. Yayli, M.O . (2019), "Effects of rotational restraints on the thermal buckling of carbon nanotube", Micro Nano Lett., 14(2), 158-162. https://doi.org/10.1049/mnl.2018.5428.
  72. Zaoui, F.Z., Ouinas, D. and Tounsi, A. (2019), "New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations", Compos. Part B Eng., 159, 231-247. https://doi.org/10.1016/j.compositesb.2018.09.051.
  73. Zheng, J., Zhang, C., Musharavati, F., Khan, A. and Sebaey, T.A. (2021), "Thermo-mechanical buckling analysis of FG-GNPs reinforced composites sandwich microplates using a trigonometric four-variable shear deformation theory", Case Stud. Therm. Eng., 101120. https://doi.org/10.1016/j.csite.2021.101120.