DOI QR코드

DOI QR Code

Study on the Effectiveness of Preloading Method on Reinforcement of the Pile Foundation by 3D FEM Analysis

3차원 수치해석을 이용한 공동주택 수직증축용 기초 보강 선재하공법 효과 분석

  • Wang, Cheng-Can (Dep. of Geospace & Geotechnical Engrg., Univ. of Science & Technology) ;
  • Han, Jin-Tae (Korea Institute of Civil Engrg. and Building Technology) ;
  • Jang, Young-Eun (Dep. of Geospace & Geotechnical Engrg., Univ. of Science & Technology) ;
  • Ha, Ik-Soo (Dept. of Civil Engrg., Kyungnam Univ.) ;
  • Kim, Seok-Jung (Korea Institute of Civil Engrg. and Building Technology)
  • 왕성찬 (과학기술연합대학원대학교(UST) 지반신공간공학과) ;
  • 한진태 (한국건설기술연구원) ;
  • 장영은 (과학기술연합대학원대학교(UST) 지반신공간공학과) ;
  • 하익수 (경남대학교 토목공학과) ;
  • 김석중 (한국건설기술연구원)
  • Received : 2017.11.23
  • Accepted : 2017.12.11
  • Published : 2018.01.31

Abstract

In recent years, vertical extension remodeling of apartment building is considered as one of the efficient ways to broaden and enhance the utilization of existing buildings due to the rapid development of population and decrement of land resources. The reinforcement of foundation is of great importance to bearing the additional load caused by the added floors. However, because of the additional load, the carried load by the existing piles would be in excess of its allowable bearing capacity. In this study, a conceptual construction method called preloading method was presented. The preloading method applies force onto the reinforcing pile before vertical extension construction. The purpose of preloading is to transfer partial load applied on the existing piles to reinforcing piles in order to keep each pile not exceeding the allowable capacity and to mobilize resistance of reinforcing pile by developing relative settlement. The feasibility and effect of preloading method was investigated by using finite numerical method. Two simulation models, foundation reinforcement with preloading and without preloading, were developed through PLAXIS 3D program. Numerical results showed that the presented preloading method is capable of sharing partial carried load of existing pile and develops the mobilization of reinforcing pile's frictional resistance.

최근, 수직증축을 통한 공동주택의 리모델링은 제한된 부지 내에서 세대수를 증가시킬 수 있다는 장점으로 인해 그 수요가 증가하고 있다. 수직증축시 기초보강의 가장 큰 목적은 증축되는 층고로 인해 발생하는 추가하중을 지지하는 것이다. 단, 추가된 하중의 일부가 보강말뚝이 아닌 기존말뚝에도 가해지기 때문에, 기존말뚝의 허용지지력을 초과하지 않는 범위 내에서만 증축이 가능하다. 선재하공법은 수직증축 시공 전 단계에서 기존말뚝에 가해지던 하중 중 일부를 보강말뚝에 분담하도록 하여, 증축하중이 추가되어도 기존말뚝의 허용지지력을 초과하지 않도록 하며, 선재하 하중에 의해 보강말뚝의 침하를 미리 발생시켜 증축하중이 가해졌을 때 보강말뚝의 지지력을 빨리 발현시키는 공법이다. 본 연구에서는 3차원 수치해석을 통해 선재하공법의 효과를 분석하였다. 3D FEM 프로그램인 PLAXIS 3D를 활용하여 수직증축 리모델링시 기초보강을 모델링하고 선재하공법의 적용 유무에 따른 효과를 비교 분석하였다. 수치해석 결과 선재하공법을 적용하였을 때 기존말뚝에 가해지던 하중을 보강말뚝에 더욱 효과적으로 분담하였으며, 보강말뚝의 지지력이 조기에 발현하는 데 효과가 있는 것으로 확인하였다.

Keywords

References

  1. Bruce, D. A. (1993), "In-situ Earth Reinforcing by Soil Nailing", In Underpinning and Retention, Springer US, pp.340-394.
  2. Butterfield, R. and Banerjee, P. K. (1971), "The Problem of Pile Group-pile Cap Interaction", Geotechnique, Vol.21, No.2, pp.135-142. https://doi.org/10.1680/geot.1971.21.2.135
  3. Cho, S. H., Choi, K. S., Cho, S. D., You, Y. C., and Choi, C. H. (2014), Experimental study for load distribution characteristics of existing and reinforcing piles, Journal of the Korean Geo-Environmental Society, Vol.15, No.12, pp.87-95 (in Korean).
  4. Cole, K. W. (1993), "Conventional Piles in Underpinning", In underpinning and Retention, Springer US, pp.63-83.
  5. Das, B. M. (2015), Principles of Foundation Egineering, Cengage learning.
  6. Dietz, K. and Schurman, A. (2006), "Foundation Improvement of Historical Buildings by Micropiles: Museum Island Berlin, St. Kolumba Cologne, Proceedings of the 7th International Workshop on Micropiles.
  7. Esmaeili, M., Morteza, G. N., and Farid, K. (2012), "Experimental and Numerical Study of Micropils to Reinforce High Railway Embankments", International Journal of Geomechanics, Vol.13, No.6, pp.729-744.
  8. FHWA. (2005), "Micropile Design and Construction Reference Manual", U.S. Department of Transportation Federal Highway Administration. FHWA NHI-05-039.
  9. Han, J. and Gabr, M. A. (2002), "Numerical Analysis of Geosyntheticreinforced and Pile-supported Earth Platforms Over Soft Soils", Journal of Geotechnical and Geoenvironmental Engineering, Vol.128, No.1, pp.44-53. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:1(44)
  10. Han, J. and Ye, S. L. (2006), "A Field Study on the behavior of a Foundation Underpinned by Micropiles", Canadian Geotechnical Journal, Vol.43, No.1, pp.30-42. https://doi.org/10.1139/t05-087
  11. Lebeau, J.S. (2008), "FE-analysis of Piled and Piled Raft Foundations", Graz University of Technology. Project Report.
  12. Lehtone, J., Jouko and Hyyooa, V. V. (2010), "Classification of Micropile Underpinning Methods Exemplified by Projects in Turku", Electronic Journal of Geotechnical Engineering, 15, pp.295-310.
  13. Liu, L. P., Li, X. Y., Wang, D. W., and Yan, F. (2005), "Foundation Reinforcement and Building Rectification of Deviation by Jack-up and Preloading Underpinning Pile", Chinese Journal of Rock Mechanics and Engineering, Vol.24, No.15, pp.2795-2801 (in Chinese).
  14. Lizzi, F. (1982), "The Static Restoration of Monuments", International Society for Micropiles & The International Association of Foundation Drilling.
  15. Lizzi, F. (1993), "Pali Radice" Strucutres", Underpinning and Retention, Springer US, pp.84-156.
  16. Makarchian, M. and Poulos, H. G. (1994), "Numerical Study of Underpinning by Piles for Settlement Control of Strip Foundation", Vertical and Horizontal Deformation of Foundations and Embankments, ASCE, pp.303-313.
  17. Makarchian, M. and Poulos, H. G. (1996), "Simplified Method for Design of Underpinning Piles", Jounal of Geotechnical Engineering, Vol.122, No.9, pp.745-751. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:9(745)
  18. Ministry of Land, Infrastucture and Transport (2013), A Plan to Improve the Remodeling System of Apartment Buildings (in Korean).
  19. Nakai, T., Shahin, H. M., Morikawa, Y., Masuda, S., and Mio, S. (2014), "Effect of Reinforcement on Bearing Capacity of Foundations", In Advance in Soil Dynamics and Foundation Engineering, pp. 482-490.
  20. O'Neill, M.W. and Pierry, R.F. (1989), "Behavior of Mini-piles Used in Foundation Underpinning in Beaumont Clay, Houston, Texas, USA. Proceedings of the International Conference on Piling and Deep Foundations, Lontoo.
  21. Plaxis, B. V. (2005), PLAXIS User's manual.
  22. Terzaghi, K. and Peck, R. B. (1967), Soil Mechanics in Engineering Practice, 2 nd ed, John Wiley and Sons, New York.
  23. Touma, F. T. and Reese, L. C. (194), "Behavior of Bored Piles in Sand", Journal Geotechnical Engineering Division, ASCE, Vol. 100, No.7, pp.749-761.
  24. Tschuchnigg, F. and Schweiger, H. F. (2013), "Comparison of Deep Foundation Systems Using 3D Finite Element Analysis Employing Different Modeling Techniques, Geotechnical Engineering Journal of the SEAGS & AGSSEA, Vol.44, No.3, pp.40-46.
  25. Tsukada, K., Miura, Y., Tsubokawa, Y., and Otanti, G. L. (2006), "Mechanism of Bearing Capacity of Spread Footings Reinforced with Micropiles", Soils and Foundations, Vol.46, No.3, pp.367-376. https://doi.org/10.3208/sandf.46.367
  26. Wang, C. C. and Han, J. T. (2017), "3D FEM Analysis on Load Distribution Behavior for Pile Foundation during Vertical Extension of Apartment Building", Proceedings of the 19 th International Conference on Soil Mechanics and Geotechnical Engineering, pp.1929-1934.

Cited by

  1. A novel preloading method for foundation underpinning for the remodeling of an existing building vol.24, pp.1, 2021, https://doi.org/10.12989/gae.2021.24.1.029