• Title/Summary/Keyword: Forward error correction code

Search Result 84, Processing Time 0.024 seconds

Video Transmission Technique based on Deep Neural Networks for Optimizing Image Quality and Transmission Efficiency (영상 품질 및 전송효율 최적화를 위한 심층신경망 기반 영상전송기법)

  • Lee, Jong Man;Kim, Ki Hun;Park, Hyun;Choi, Jeung Won;Kim, Kyung Woo;Bae, Sung Ho
    • Journal of Broadcast Engineering
    • /
    • v.25 no.4
    • /
    • pp.609-619
    • /
    • 2020
  • In accordance with a demand for high quality video streaming, it needs high data rate in limited bandwidth and more traffic congestion occurs. In particular, when providing real time video service, packet loss rate and bit error probability increase significantly. To solve these problems, a raptor code, which is one of FEC(Forward Error Correction) techniques, is pervasively used in the application layers as a method for improving real-time service quality. In this paper, we propose a method of determining image transmission parameters based on various deep neural networks to increase transmission efficiency at a similar level of image quality by using raptor codes. The proposed neural network uses the packet loss rate, video encoding rate and data rate as inputs, and outputs raptor FEC parameters and packet sizes. The results of the proposed method present that the throughput is 1.2% higher than that of the existing multimedia transmission technique by optimizing the transmission efficiency at a PSNR(Peak Signal-to-Noise Ratio) level similar to that of the existing technique.

Performance of Convolution Coding Underwater Acoustic Communication System on Frequency Selectivity Index (주파수 선택 지표에 따른 길쌈 부호 수중 음향 통신 시스템의 성능 평가)

  • Seo, Chulwon;Park, Jihyun;Park, Kyu-Chil;Shin, Jungchae;Jung, Jin Woo;Yoon, Jong Rak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.6
    • /
    • pp.494-501
    • /
    • 2013
  • The convolution code(CC) of code rate 1/2 as a forward error correction (FEC) in Quadrature Phase Shift Keying (QPSK) is applied to decrease bit error rate (BER) by background noise and multipath in shallow water acoustic channel. Ratio of transmitting signal bandwidth to channel coherence bandwidth is defined as frequency selectivity index. BER and bit energy-to-noise ratio gain of transmitted signal according to frequency selectivity index are evaluated. In the results of indoor water tank experiment, BER is well matched theoretical results at frequency selectivity index less than about 1.0. And bit energy-to-noise ratio gain is also matched theoretical value of 5 dB. BER is effectively decreased at frequency selective multipath channel with frequency selectivity index higher than 1.0. But bit energy-to-noise ratio greater than a certain size in terms of CC weaving is effective in reducing bit errors. In the results, the defined frequency selectivity index in this study could be applied to evaluate a performance of CC in multipath channel. Also it could effectively reduced BER in a low speed underwater acoustic communication system without an equalizer.

A Study on the hardware implementation of the 3GPP standard Turbo Decoder (3GPP 표준의 터보 복호기 하드웨어 설계에 관한 연구)

  • 김주민;정덕진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.3C
    • /
    • pp.215-223
    • /
    • 2003
  • Turbo codes are selected as FEC(Forward error correction) codes with convolution code in 3GFP(3rd generation partnership project) and 3GPP2 standard of IMT2000. Especially, l/3 turbo code with K=4 is employed for 3GPP standard. In this paper, we proposed a hardware structure of a turbo decoder and denveloped the decoder for 3GPP standard turbo code. For its efficient operation, we design a SOVA decoder by employing a register exchange decoding block and new path metric normalization block as a SISO constituent decoder. In addition, we estimate its performance under MATLAB 6.0 and designed the turbo decoder including control block, input control buffer, SOVA constituent decoder with VHDL. Finally, we synthesized the developed turbo decoder under Synopsys FPGA Express and verified it with ALTERA EPF200SRC240-3 FPGA device.

Performance analysis on wireless sensor network using LDPC codes over node-to-node interference (노드 간 간섭 시 LDPC부호를 이용한 무선 센서 네트워크의 성능 분석)

  • Choi Sang-Min;Moon Byung-Hyun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.1 s.343
    • /
    • pp.19-24
    • /
    • 2006
  • Wireless sensor networks(WSN) technology has various applications such as surveillance and information gathering in the uncontrollable area of human. One of major issues in WSN is the research for reducing the energy consumption and reliability of data. A system with forward error correction(FEC) can provide an objective reliability while using less transmission power than a system without FEC. In this paper, we propose to use LDPC codes of various code rate(0.53, 0.81, 0.91) for FEC for WSN. Also, we considered node-to-node interference in addition to AWGN channel. The proposed system has not only high reliable data transmission at low SNR, but also reduced transmission power usage.

SVC Video Transmission Method Improving Multicast Broadcast Single Frequency Networks Service Coverage (Multicast Broadcast Single Frequency Networks 서비스 영역 개선을 위한 SVC 비디오 전송방법)

  • Cho, Yong-Woo;Lee, Yong-Hun;Suh, Doug-Young;Cho, Jai-Hyung
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.6
    • /
    • pp.845-850
    • /
    • 2010
  • In this paper, a method for transmitting layered SVC streams in differentiated MBSFN channels is presented. Scalable coded video streams are transmitted in modulation channels of different efficiency that it achieves reduced resource consumption compared to non-scalable AVC stream. When utilizing with Raptor FEC, the combined effect is enhanced service coverage with providing minimum video quality at the edge of the service area, than the case of AVC.

An Adaptive Decision Feedback Equalizer for Underwater Acoustic Communications (수중음향통신을 위한 적응 결정궤환 등화기)

  • Choi, Young-Chol;Park, Jong-Won;Lim, Yong-Kon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.4
    • /
    • pp.645-651
    • /
    • 2009
  • In this paper, we present bit error rate(BER) performance of an adaptive decision feedback equalizer(DFE) using experimental data. The experiment was performed at the shore of Geoje in November 2007. The BER of the adaptive DFE whose tap weight is updated by RLS is described with change of feedforward filter length, feedback filter length, training sequence length, and delay, which shows that the uncoded average BER is $4{\times}10^2\;and\;1.5{\times}10^{-2}$ with transmission range of 9.7km and 4km, respectively. The BER of the adaptive DFE can be lower than 10-3 by a forward error correction code and therefore the adaptive DFE may be a good candidate for a high speed AUV communications since the volume and weight of the underwater acoustic modem should be small because of the restricted space and power in the battery-operated AUV.

FPGA Design and Sync-Word Detection of CATV Down-Link Stream Transmission System (CATV 하향 스트림 적용 시스템에서 동기 검출 방안 및 FPGA 설계)

  • Jung, Ji-Won
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.4
    • /
    • pp.286-294
    • /
    • 2011
  • Cable modems typically are implemented by a forward error correction(FEC) scheme. The ITU-T Recommendation J-38 Annex B specifies using 64- and 256- quadrature amplitude modulation (QAM) and extended RS coding scheme. In implementing the cable modem, there are some problems to fabricate and fitting on FPGA chip. First, many clocks are needed in implementing cable modem because of different code rate and different modulation types. To reduce the number of clocks, we use the two memories, which are different clock speed for reading and writing data. Second, this system lost the bit-synchronization and frame-synchronization in decoder, the system recognize that all data is error. This paper solves the problems by using simple 5-stage registers and unique sync-word. Based on solutions for about problems, the cable modem is fabricated on FPGA chip name as Vertex II pro xc2vp30-5 by Xilinx, and we confirmed the effectiveness of the results.

High-Throughput QC-LDPC Decoder Architecture for Multi-Gigabit WPAN Systems (멀티-기가비트 WPAN 시스템을 위한 고속 QC-LDPC 복호기 구조)

  • Lee, Hanho;Ajaz, Sabooh
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.2
    • /
    • pp.104-113
    • /
    • 2013
  • A high-throughput Quasi-Cyclic Low-Density Parity-Check (QC-LDPC) decoder architecture is proposed for 60GHz multi-gigabit wireless personal area network (WPAN) applications. Two novel techniques which can apply to our selected QC-LDPC code are proposed, including a four block-parallel layered decoding technique and fixed wire network. Two-stage pipelining and four block-parallel layered decoding techniques are used to improve the clock speed and decoding throughput. Also, the fixed wire network is proposed to simplify the switch network. A 672-bit, rate-1/2 QC-LDPC decoder architecture has been designed and implemented using 90-nm CMOS standard cell technology. Synthesis results show that the proposed QC-LDPC decoder requires a 794K gate and can operate at 290 MHz to achieve a data throughput of 3.9 Gbps with a maximum of 12 iterations, which meet the requirement of 60 GHz WPAN applications.

Performance of Turbo Coded OFDM Systems in W-CDMA Wireless Communication Channel (W-CDMA 무선통신 채널에서 터보 부호를 적용한 OFDM 시스템의 성능 분석)

  • Shin, Myung-Sik;Yang, Hae-Sool
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.4
    • /
    • pp.183-191
    • /
    • 2010
  • In the recent digital communication systems, the performance of Turbo Code used as the error correction coding method depends on the interleaver size influencing the free distance determination and the iterative decoding algorithms of the turbo decoder. However, some iterations are needed to get a better performance, but these processes require a large time delay. Recently methods of reducing the number of iteration have been studied without degrading original performance. In this paper, the new method of combining ME (Mean Estimate) stopping criterion with SDR (sign difference ratio) stopping criterion among previous stopping criteria is proposed, and the fact of compensating each method's missed detection is verified. Faster decoding is realized that about 1~2 time iterations to reduced through adopting this method into serially concatenated both decoders. System Environments were assumed W-CDMA forward link system with intense MAI (multiple access interference).

Efficient Detection Scheme for Turbo Coded QO-STBC Schemes (터보 부호와 결합된 준직교 시공간 블록 부호의 효율적인 검출 기법)

  • Park, Un-Hee;Oh, Dae-Sub;Kim, Young-Min;Kim, Soo-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5A
    • /
    • pp.423-430
    • /
    • 2010
  • The performances of turbo-coded space-time block coding (STBC) schemes are subject to how soft decision detection (SDD) information are generated from the STBC decoder. For this reason, we have to pay particular attention to estimation of SDD. In this paper, we evaluate the performance of a turbo coded STBC scheme depending on the accuracy of the SDD. Recently, a new quasi orthogonal STBC (QO-STBC) scheme using a noise whitened filter was proposed in order to reduce noise enhancing effect of zero forcing detection process. This QO-STBC scheme was proven to be efficient in computational complexity compared to the other conventional QO-STBC schemes. In this paper, we first present detailed mathematical analysis on the noise whitened QO-STBC scheme, and by using the result we propose the optimum SDD method.