• Title/Summary/Keyword: Force Transmission Analysis

Search Result 209, Processing Time 0.028 seconds

Development of Shaft Analysis Model for Power Transmission System Optimization (동력전달 시스템의 최적화를 위한 축 해석 모델 개발)

  • Lee, Ju-Yeon;Kim, Su-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.8-16
    • /
    • 2021
  • This study develops a shaft analysis model for the optimization of the power transmission system. The finite element method was used for the shaft analysis model. The shaft and gear were assumed Timoshenko beams. Strength was evaluated according to DIN 743, and gear misalignment was calculated through ISO 6336 and the coordinate system rotation. The analysis software for a power transmission system was developed using Visual Studio 2019. The analysis results of the developed program were compared with those of commercial software (MASTA, KISSsoft, and Romax). We confirmed that the force, deformation, and safety factors at each node were the same as those of the commercial software. The absolute value of the gear misalignment of the developed program and commercial software was different. However, the gear misalignment tended to increase with increasing the displacement in the tooth width direction.

DYNAMIC 3-DIMENSIONAL FINITE ELEMENT ANALYSIS OF MANDIBULAR FRACTURE MECHANISM (충격하중(衝擊荷重)과 하악골(下顎骨) 골절발생(骨折發生) 기전(機轉)의 유한요소법적(有限要素法的) 연구(硏究))

  • Oh, Seung-Hwan;Kim, Yeo-Gab
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.18 no.3
    • /
    • pp.470-487
    • /
    • 1996
  • The purpose of this study was to investigate the dynamic response of the mandible to impact and provide insight into the fracture mechanism of the mandible, by 3-dimensional finite element method. The finite element model of the mandible was developed and calculated using NASTRAN/XL (MSC co. U.S.A.) and the linear dynamic transient analysis was performed according to the impulsive force direction, force type and impulse time to the mandible. At first, the load was applied on the mandibular symphysis, body, angle and subcondylar area in the horizontal mandibular plane and the computed stress-time histories at 14 locations of the mandible were obtained. Secondly, the impulsive force was directed to the symphyseal area with changing the force magnitude and impulse time, and calculated the node displacement at 8 locations of mandible. The conclusions from from this study were as follows. 1. The appearance of impulsive energy transmission was different to the direction of impulse to the mandible. 2. The impulsive stress and deformation were larger in lingual or medial side than buccal or lateral in the mandible. 3. The velocity, appearance of energy transmission and the fracture pattern in mandible were affected rather impulse time than force. 4. The horizontal impact to the one side of mandible did not have effect on the stress and displacement of contralateral mandible. From the above results, fracture pattern in symphysis can be showed as simple or comminuted, multiple or associated in body and angle and solitary in subcondyle area.

  • PDF

Power Flow Analysis of Vibration of Coupled Plates Excited by a Point Force In an Arbitrary Direction (임의의 방향 점가진력에 의한 연성 평판 진동의 파워흐름해석)

  • 최재성;길현권;홍석윤
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.6
    • /
    • pp.181-192
    • /
    • 2001
  • The power flow analysis (PFA) has been performed to analyze the vibration of coupled plates excited by a point force in an arbitrary direction. The point force generates the out-of-plane vibration associated wish flexural waves and the in-plane vibration associated with longitudinal and shear waves. The energy governing equation for each type of waves was introduced and solved to Predict the vibrational energy density and intensity generated by the out-of-plane and in-plane components of the point force in an arbitrary direction. The wave transmission approach was used to consider the mode conversion at the joint of the coupled plates. Numerical results for vibrational energy density and intensity on the coupled plates were presented. Comparison of the results by PFA with exact results showed that PFA can be an effective tool to predict the spatial variation of the vibrational energy and intensity on the coupled plates at high frequencies.

  • PDF

Seismic responses of transmission tower-line system under coupled horizontal and tilt ground motion

  • Wei, Wenhui;Hu, Ying;Wang, Hao;Pi, YongLin
    • Earthquakes and Structures
    • /
    • v.17 no.6
    • /
    • pp.635-647
    • /
    • 2019
  • Tests and theoretical studies for seismic responses of a transmission tower-line system under coupled horizontal and tilt (CHT) ground motion were conducted. The method of obtaining the tilt component from seismic motion was based on comparisons from the Fourier spectrum of uncorrected seismic waves. The collected data were then applied in testing and theoretical analysis. Taking an actual transmission tower-line system as the prototype, shaking table tests of the scale model of a single transmission tower and towers-line systems under horizontal, tilt, and CHT ground motions were carried out. Dynamic equations under CHT ground motion were also derived. The additional P-∆ effect caused by tilt motion was considered as an equivalent horizontal lateral force, and it was added into the equations as the excitation. Test results were compared with the theoretical analysis and indicated some useful conclusions. First, the shaking table test results are consistent with the theoretical analysis from improved dynamic equations and proved its correctness. Second, the tilt component of ground motion has great influence on the seismic response of the transmission tower-line system, and the additional P-∆effect caused by the foundation tilt, not only increases the seismic response of the transmission tower-line system, but also leads to a remarkable asymmetric displacement effect. Third, for the tower-line system, transmission lines under ground motion weaken the horizontal displacement and acceleration responses of transmission towers. This weakening effect of transmission lines to the main structure, however, will be decreased with consideration of tilt component.

Kinematic Manipulability Analysis of the Casing Oscillator (케이싱 오실레이터의 기구학적 조작성 해석)

  • Nam, Yun-Joo;Park, Myeong-Kwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.904-914
    • /
    • 2004
  • In this paper, input-output velocity and force transmission characteristics of the Casing Oscillator which is a construction machine with 4 degrees of freedom are examined. After the Jacobian matrix is decomposed into the linear part and angular part, the velocity and force transmission characteristics for the linear and angular workspace are easily analyzed and visualized even if the Casing Oscillator has the spatial dimensional workspace with 4 DOF. Regarding the manipulability measure of the Casing Oscillator, the kinematic isotropic index and the manipulability measure which represent the isotropy and volume of the manipulability ellipsoid, respectively, are combined to coincidently consider them with respect to equivalent ranges and fluctuations. A performance of the Casing Oscillator is evaluated by the newly proposed manipulability measures.

A Study on Graphite Powder Compaction Behaviors Using the Discrete Element Method (이산요소법을 이용한 Graphite 분말 압축 특성 연구)

  • Jeong, Jun Hyeok;Choi, Jinnil
    • Journal of Powder Materials
    • /
    • v.28 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • Accurate and effective powder compaction analyses are performed for brittle materials such as graphite, utilized as a solid lubricant, by using the discrete element method (DEM). The reliability of the DEM analysis is confirmed by comparing the results of graphite powder compaction analyses using the DEM particle bonding contact model and particle non-bonding contact model with those from the powder compaction experiment under the same conditions. To improve the characteristics, the parameters influencing the compaction properties of the metal-graphite mixtures are explored. The compressibility increases as the size distribution of the graphite powder increases, where the shape of the graphite particles is uniform. The improved compaction characteristics of the metal-graphite (bonding model) mixtures are further verified by the stress transmission and compressive force distribution between the top and bottom punches. It is confirmed that the application of graphite (bonding model) powders resulted in improved stress transmission and compressive force distribution of 24% and 85%, respectively.

Experimental Demonstration of Enhanced Transmission Due to Impedance-matching Si3N4 Layer in Perforated Gold Film

  • Park, Myung-Soo;Yoon, Su-Jin;Hwang, Je-Hwan;Kang, Sang-Woo;Kim, Deok-kee;Ku, Zahyun;Urbas, Augustine;Lee, Sang Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.359-359
    • /
    • 2014
  • In this study, surface plasmon resonance structures for the selective and the enhanced transmission of infrared light were designed. In order to relieve the large discontinuity of refractive index between air and metal hole array, $Si_3N_4$ was used as the impedance matching layer. Experimental parameter were calculated and determined in advance by the rigorous coupled wave analysis (RCWA) simulation, and then the experiment was carried out. A 2-dimensional metal hole array structures were patterned on the size of $1{\times}1cm^2$ GaAs substrate using photolithography process, and 5 nm thick Ti, 50 nm thick Au were deposited by E-beam evaporator, respectively. Subsequently, $Si_3N_4$ films with various thicknesses (150, 350, 550, and 750 nm) were deposited by plasma enhanced chemical vapor deposition (PECVD). For the comparison, transmittance of specimens with and without $Si_3N_4$ was measured using Fourier transform infrared spectroscopy (FTIR) in the range of $2.5-15{\mu}m$. Furthermore, the surface and the cross-sectional images were collected from the specimens by scanning electron microscopy (SEM). From the results, it was demonstrated that the transmittance was enhanced up to 80% by the deposition of 750 nm $Si_3N_4$ at $6.23{\mu}m$. It has advantage of enhanced transmission despite the simple fabrication process.

  • PDF

The Intelligent Shift Algorithm for Automatic Transmissions and The Development of Simulators for Its Optimization and Analysis (지능형 자동변속 알고리즘 개발 및 성능 분석과 최적화를 위한 시뮬레이터 개발)

  • Kang, Hyo-Seok;Hyun, Chang-Ho;Park, Mignon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.5
    • /
    • pp.694-700
    • /
    • 2010
  • This paper proposes the intelligent shift algorithm for automatic transmissions and develops the simulator for the its optimization and analysis. It provides the comfortable ride to drivers and improves the driving force efficiency without any loss of the performance. In addition, the developed simulator not only cuts the commercialization cost but provides diverse test conditions. The analysis and optimization of the proposed scheme are verified by the developed simulator. As a simple example, the developed simulator verifies the proposed algorithm and shows the comparative result with the existed automatic transmission shift algorithm.

Axial Stiffness Analysis of a Clutch Diaphragm Spring in Passenger Cars (승용차용 클러치 다이아프램 스프링의 축방향 강성해석)

  • Kim, J.Y.;Kim, J.G.;Yoon, H.J.
    • Journal of Power System Engineering
    • /
    • v.14 no.6
    • /
    • pp.35-40
    • /
    • 2010
  • This article deals with the numerical analysis results of stiffness of diaphragm spring used in the clutch of a manual transmission. In order to investigate the relationship of the force and displacement in a diaphragm spring, we have established a numerical model of diaphragm spring using a well-known analytic model of Belleville spring and a cantilever beam model for the finger part of diaphragm spring. Using the stress and strain relations of Belleville spring and cantilever beam, we propose the analytic equation of motion of diaphragm spring for the use of a clutch automated actuator in an automated manual transmission. The proposed analytic model represents the typical dynamic characteristics of diaphragm spring along with the release bearing travel. And it is characterized in a closed-form equation, therefore it can be used for the further study of development of actuator and control law of clutch automating mechanism.

Analysis of I-P Curve Characteristics by the temperature of Solenoid Valve for Automatic Transmission (자동변속기 SOLENOID 밸브의 온도에 의한 전류(I)-제어압(P)특성 분석)

  • Choi, Y.Y.;Seo, S.H.;Lee, S.H.;Yang, H.S.
    • 유공압시스템학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.7-11
    • /
    • 2010
  • Various transmission technologies have been developed to satisfy environmental issues recently. Especially, the technology of the proportional control solenoid valve (PCSV) to ensure high level performance by electronic control has been studied. This study builds an analysis process for designing of the PCSV and characteristic predictions.

  • PDF