Browse > Article
http://dx.doi.org/10.4150/KPMI.2021.28.1.1

A Study on Graphite Powder Compaction Behaviors Using the Discrete Element Method  

Jeong, Jun Hyeok (Hanbat National University, Mechanical Engineering)
Choi, Jinnil (Hanbat National University, Mechanical Engineering)
Publication Information
Journal of Powder Materials / v.28, no.1, 2021 , pp. 1-6 More about this Journal
Abstract
Accurate and effective powder compaction analyses are performed for brittle materials such as graphite, utilized as a solid lubricant, by using the discrete element method (DEM). The reliability of the DEM analysis is confirmed by comparing the results of graphite powder compaction analyses using the DEM particle bonding contact model and particle non-bonding contact model with those from the powder compaction experiment under the same conditions. To improve the characteristics, the parameters influencing the compaction properties of the metal-graphite mixtures are explored. The compressibility increases as the size distribution of the graphite powder increases, where the shape of the graphite particles is uniform. The improved compaction characteristics of the metal-graphite (bonding model) mixtures are further verified by the stress transmission and compressive force distribution between the top and bottom punches. It is confirmed that the application of graphite (bonding model) powders resulted in improved stress transmission and compressive force distribution of 24% and 85%, respectively.
Keywords
Powder compaction; Graphite; DEM; Particle contact model;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 P. R. Gibson, A. J. Clegg and A. A. Das: Wear, 92 (1984) 193.
2 H. Nayeb-Hashemi, J. T. Blucher and J. Mirageas: Wear, 150 (1991) 21.   DOI
3 G. Goller, D. P. Koty, S. N. Tewari, M. Singh and A. Tekin: Metall. Mater. Trans. A, 27 (1996) 3727.   DOI
4 H. Y. Yang, J. H. Kim, Y. W. Kim, J. S. Ha, S. H. Park and H. K. Lee: J. Korean Soc. Propulsion Eng., 17 (2013) 95.   DOI
5 R. Gilardi, L. Alzati, M. Thiam, J. F. Brunel, Y. Desplanques, P. Dufrenoy, S. Sharma and J. Bijwe: Materials, 5 (2012) 2258.   DOI
6 Y. Sheng, C. J. Lawrence, B. J. Briscoe and C. Thornton: Eng. Comput., 21 (2004) 304.   DOI
7 J. F. Jerier, B. Hathong, V. Richefeu, B. Chareyre, D. Imbault, F. V. Donze and P. Doremus: Powder Technol., 208 (2011) 537.   DOI
8 M. Ucgul, J. M. Fielke and C. Saunders: Biosyst. Eng., 129 (2015) 298.   DOI
9 C. Santos, V. Urdaneta, X. Garcia and E. Medina: Geophysics, 76 (2011) 165.
10 P. W. Cleary and M. D. Sinnott: Miner. Eng., 74 (2015) 178.   DOI
11 P. A. Cundall and O. D. L. Strack: Geotechnique, 29 (1979) 47.   DOI
12 D. O. Potyondy and P. A. Cundall: Int. J. Rock Mech. Min. Sci., 41 (2014) 1329.   DOI
13 C. L. Martin: J. Mech. Phys. Solids, 52 (2014) 1691.   DOI
14 N. A. Fleck: J. Mech. Phys. Solids, 43 (1995) 1409.   DOI
15 A. G. Wang and I. M. Hutchings: Mater. Sci. Technol., 5 (1989) 71.   DOI
16 C. L. Martin, D. Bouvard and S. Shima: J. Mech. Phys. Solids, 51 (2003) 667.   DOI
17 Y. Sun, Y. Wang, Y. Li, K. Zhou and L. Zhang: Trans. Nonferrous Met. Soc. China, 30 (2020) 2177.   DOI
18 A. Simchi: Mater. Des., 24 (2003) 585.   DOI
19 S. Brown and G. Abou-Chedid: J. Mech. Phys. Solids, 42 (1994) 383.   DOI
20 E. Olsson and P. L. Larsson: Powder Technol., 243 (2013) 71.   DOI