DOI QR코드

DOI QR Code

A Study on Graphite Powder Compaction Behaviors Using the Discrete Element Method

이산요소법을 이용한 Graphite 분말 압축 특성 연구

  • Received : 2020.10.25
  • Accepted : 2021.01.04
  • Published : 2021.02.28

Abstract

Accurate and effective powder compaction analyses are performed for brittle materials such as graphite, utilized as a solid lubricant, by using the discrete element method (DEM). The reliability of the DEM analysis is confirmed by comparing the results of graphite powder compaction analyses using the DEM particle bonding contact model and particle non-bonding contact model with those from the powder compaction experiment under the same conditions. To improve the characteristics, the parameters influencing the compaction properties of the metal-graphite mixtures are explored. The compressibility increases as the size distribution of the graphite powder increases, where the shape of the graphite particles is uniform. The improved compaction characteristics of the metal-graphite (bonding model) mixtures are further verified by the stress transmission and compressive force distribution between the top and bottom punches. It is confirmed that the application of graphite (bonding model) powders resulted in improved stress transmission and compressive force distribution of 24% and 85%, respectively.

Keywords

References

  1. P. R. Gibson, A. J. Clegg and A. A. Das: Wear, 92 (1984) 193.
  2. H. Nayeb-Hashemi, J. T. Blucher and J. Mirageas: Wear, 150 (1991) 21. https://doi.org/10.1016/0043-1648(91)90303-C
  3. A. G. Wang and I. M. Hutchings: Mater. Sci. Technol., 5 (1989) 71. https://doi.org/10.1179/026708389790337503
  4. G. Goller, D. P. Koty, S. N. Tewari, M. Singh and A. Tekin: Metall. Mater. Trans. A, 27 (1996) 3727. https://doi.org/10.1007/BF02595464
  5. H. Y. Yang, J. H. Kim, Y. W. Kim, J. S. Ha, S. H. Park and H. K. Lee: J. Korean Soc. Propulsion Eng., 17 (2013) 95. https://doi.org/10.6108/KSPE.2013.17.5.095
  6. R. Gilardi, L. Alzati, M. Thiam, J. F. Brunel, Y. Desplanques, P. Dufrenoy, S. Sharma and J. Bijwe: Materials, 5 (2012) 2258. https://doi.org/10.3390/ma5112258
  7. Y. Sheng, C. J. Lawrence, B. J. Briscoe and C. Thornton: Eng. Comput., 21 (2004) 304. https://doi.org/10.1108/02644400410519802
  8. J. F. Jerier, B. Hathong, V. Richefeu, B. Chareyre, D. Imbault, F. V. Donze and P. Doremus: Powder Technol., 208 (2011) 537. https://doi.org/10.1016/j.powtec.2010.08.056
  9. M. Ucgul, J. M. Fielke and C. Saunders: Biosyst. Eng., 129 (2015) 298. https://doi.org/10.1016/j.biosystemseng.2014.11.006
  10. C. Santos, V. Urdaneta, X. Garcia and E. Medina: Geophysics, 76 (2011) 165.
  11. P. W. Cleary and M. D. Sinnott: Miner. Eng., 74 (2015) 178. https://doi.org/10.1016/j.mineng.2014.10.021
  12. P. A. Cundall and O. D. L. Strack: Geotechnique, 29 (1979) 47. https://doi.org/10.1680/geot.1979.29.1.47
  13. D. O. Potyondy and P. A. Cundall: Int. J. Rock Mech. Min. Sci., 41 (2014) 1329. https://doi.org/10.1016/j.ijrmms.2004.09.011
  14. C. L. Martin: J. Mech. Phys. Solids, 52 (2014) 1691. https://doi.org/10.1016/j.jmps.2004.03.004
  15. N. A. Fleck: J. Mech. Phys. Solids, 43 (1995) 1409. https://doi.org/10.1016/0022-5096(95)00039-L
  16. C. L. Martin, D. Bouvard and S. Shima: J. Mech. Phys. Solids, 51 (2003) 667. https://doi.org/10.1016/S0022-5096(02)00101-1
  17. Y. Sun, Y. Wang, Y. Li, K. Zhou and L. Zhang: Trans. Nonferrous Met. Soc. China, 30 (2020) 2177. https://doi.org/10.1016/s1003-6326(20)65370-5
  18. A. Simchi: Mater. Des., 24 (2003) 585. https://doi.org/10.1016/S0261-3069(03)00155-9
  19. S. Brown and G. Abou-Chedid: J. Mech. Phys. Solids, 42 (1994) 383. https://doi.org/10.1016/0022-5096(94)90024-8
  20. E. Olsson and P. L. Larsson: Powder Technol., 243 (2013) 71. https://doi.org/10.1016/j.powtec.2013.03.040