• Title/Summary/Keyword: Force Approximation

Search Result 136, Processing Time 0.029 seconds

A REGULARIZED CORRECTION METHOD FOR ELLIPTIC PROBLEMS WITH A SINGULAR FORCE

  • Kim, Hyea-Hyun
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.5
    • /
    • pp.927-945
    • /
    • 2012
  • An approximation of singular source terms in elliptic problems is developed and analyzed. Under certain assumptions on the curve where the singular source is defined, the second order convergence in the maximum norm can be proved. Numerical results present its better performance compared to previously developed regularization techniques.

Decentralized Control of Robot Manipulator Using the RBF Neural Network (RBF 신경망을 이용한 로봇 매니퓰레이터의 분산제어)

  • Won, Seong-Un;Kim, Yeong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.657-660
    • /
    • 2003
  • Control of multi-link robot arms is a very difficult problem because of the highly nonlinear dynamics. Decentralized control scheme is developed for control of robot manipulators based on RBF(Radial Basis Function) Neural Networks. RBF Neural Networks is used to approximate the coupling forces among the joints, coriolis force, centrifugal force, gravitational force, and frictional force. The compensation controller is also proposed to estimate the bound of approximation error so that the chattering effect of the control effort can be reduced. The proposed scheme does not require an accurate manipulator dynamic, and it is proved that closed-loop system is asymptotic stable despite the gross robot parameter variations. Numerical simulations for two-link robot manipulator are included to show the effectiveness of controller.

  • PDF

Effects of force fields for refining protein NMR structures with atomistic force fields and generalized-Born implicit solvent model

  • Jee, Jun-Goo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.18 no.1
    • /
    • pp.24-29
    • /
    • 2014
  • Atomistic molecular dynamics (MD) simulation has become mature enabling close approximation of the real behaviors of biomolecules. In biomolecular NMR field, atomistic MD simulation coupled with generalized implicit solvent model (GBIS) has contributed to improving the qualities of NMR structures in the refinement stage with experimental restraints. Here all-atom force fields play important roles in defining the optimal positions between atoms and angles, resulting in more precise and accurate structures. Despite successful applications in refining NMR structure, however, the research that has studied the influence of force fields in GBIS is limited. In this study, we compared the qualities of NMR structures of two model proteins, ubiquitin and GB1, under a series of AMBER force fields-ff99SB, ff99SB-ILDN, ff99SB-NMR, ff12SB, and ff13-with experimental restraints. The root mean square deviations of backbone atoms and packing scores that reflect the apparent structural qualities were almost indistinguishable except ff13. Qualitative comparison of parameters, however, indicates that ff99SB-ILDN is more recommendable, at least in the cases of ubiquitin and GB1.

Head Slider Design Using Approximation Method For Load/Unload Applications (근사화 기법을 이용한 Load/Unload 용 헤드 슬라이더 최적설계)

  • Son, Seok-Ho;Yoon, Sang-Joon;Park, No-Cheol;Park, Young-Pil;Choi, Dong-Hoon
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.3
    • /
    • pp.169-177
    • /
    • 2006
  • In this study, we present the optimization of a head slider using kriging method in order to reduce lift-off force during unloading process with satisfying reliable flying attitude in steady state. To perform an optimization process efficiently, a simplified lift-off force model, which is a function of air bearing suction force and flying attitudes, is created by kriging method. The EMDIOS, which is the process integration and design optimization software developed by iDOT, is used to automatically wrap the analysis with the optimization and efficiently implements the repetitive works between analyzer and optimizer. An optimization problem is formulated to reduce the lift-off force during unloading process while satisfying the flying attitude in reliable range over the entire recording band and reducing the probability of contact between slider and disk. The simulation result shows that the amplitude of lift-off force of optimized L/UL slider is reduced about 62%, compared with that of initial slider model. It is demonstrated by the dynamics L/UL simulation that the optimum slider incorporated with the suspension is not only smoothly loaded onto disk but also properly unloaded onto the ramp.

  • PDF

Optimized Design of a Planar Haptic Device Using Passive Actuators

  • Kim, Tae-Woo;Cho, Chang-Hyun;Kim, Mun-Sang;Song, Jae-Bok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1565-1570
    • /
    • 2003
  • Passive Haptic Devices have more benefit than the active in Stability. But Apart from benefits, it shows poor performance in haptic display. The author proposed the passive FME(Force Manipulability Ellipsoid) which can graphically show force generating ability of a passive haptic device. In this paper, performance indexes for the force approximation and pseudo friction cone are obtained with the passive FME and an optimized planar device with the indexes is proposed. Based on the above theory, experiment is conducted.

  • PDF

ANALYSIS OF THE MOTION OF A TETHER-PERTURBED SATELLITE

  • Cho, Sung-Ki;Kim, Jae-Hoon
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.4
    • /
    • pp.319-326
    • /
    • 2003
  • The motion of each satellite in a tethered satellite system is non-Keplerian in the Earth's gravitational field. In this paper, the tether perturbation force is formulated and compared with the perturbation force due to the Earth's oblateness. Also, the center of mass motion of the tethered satellite system is analyzed. The tether perturbing force on the one of satellites in a tethered satellite system is much bigger than the Earth's oblateness perturbation. The two-body motion approximation of the center of mass is acceptable to describe the motion of the system, when the libration is small.

Optimum Design of Draw-bead Force in Sheet Metal Stamping using Rigid-plastic FEM and Responses Surface Methodology (강소성 유한요소해석과 반응표면분석법을 이용한 박판성형공정에서의 드로우 비드력 최적설계)

  • Kim, Se-Ho;Huh, Hoon;Tezuka, Akira
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.143-148
    • /
    • 1999
  • Design optimization is performed to calculated the draw-bead force for satisfying the design re-quirements. For an analysis tool a rigid-plastic finite element method with modified membrane element is adopted. response surface methodology is utilized for constructing the approximation surface for the optimum searching of draw bead force in sheet metal forming process. the algorithm developed is ap-plied to a design of the draw bead forces in a deep drawing process. The results show that the design of process parameters is applicable in complex metal forming analysis. It is also noted that the present algo-rithm enhances the stable optimum solution with small times of optimization iteration.

  • PDF

Managing Approximation Models in Multidisciplinary Optimization (다분야 최적화에서의 근사모델 관리기법의 활용)

  • 양영순;정현승;연윤석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.141-148
    • /
    • 2000
  • In system design, it is not always possible that all decision makers can cooperate fully and thus avoid conflict. They each control a specified subset of design variables and seek to minimize their own cost functions subject to their individual constraints. However, a system management team makes every effort to coordinate multiple disciplines and overcome such noncooperative environment. Although full cooperation is difficult to achieve, noncooperation also should be avoided as possible. Our approach is to predict the results of their cooperation and generate approximate Pareto set for their multiple objectives. The Pareto set can be obtained according to the degree of one's conceding coupling variables in the other's favor. We employ approximation concept for modelling this coordination and the mutiobjective genetic algorithm for exploring the coupling variable space for obtaining an approximate Pareto set. The approximation management concept is also used for improving the accuracy of the Pareto set. The exploration for the coupling variable space is more efficient because of its smaller dimension than the design variable space. Also, our approach doesn't force the disciplines to change their own way of running analysis and synthesis tools. Since the decision making process is not sequential, the required time can be reduced comparing to the existing multidisciplinary optimization techniques. This approach is applied to some mathematical examples and structural optimization problems.

  • PDF

Analysis for Lubrication between Two Close Rotating Cylinders (근접하여 회전하는 두 원통 사이의 윤활유동해석)

  • 이승재;정호열;정재택
    • Tribology and Lubricants
    • /
    • v.17 no.5
    • /
    • pp.391-398
    • /
    • 2001
  • Two dimensional slow viscous flow around two counter-rotating equal cylinders is investigated based on Stokes'approximation. An exact formal expression of the stream function is obtained by using the bipolar cylinder coordinates and Fourier series expansion. From the stream function obtained, the streamline patterns around the cylinders are shown and the pressure distribution in the flow field is determined. By integrating the stress distributions on the cylinder, the force and the moment exerted on the cylinder are calculated. The flow rate through the gap between the two cylinders is also determined as the distance between two cylinders varies. Special attention is directed to the case of very small distance between two cylinders concerned with the lubrication theory and the minimum pressure is calculated to explain a possible cavitation.

Two-dimensional High Viscous Flow between Two Close Rotating Cylinders (근접하여 회전하는 두 원통 사이의 고 점성 윤활 유동)

  • 이승재;정재택
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.142-149
    • /
    • 2000
  • Two dimensional slow viscous flow around two counter-rotating equal cylinders is Investigated based on Stokes' approximation. An exact formal expression of the stream function is obtained by using the bipolar cylinder coordinates and Fourier series expansion. From the stream function obtained, the streamline patterns around the cylinders are shown and the pressure distribution In the flow field is determined. By Integrating the stress distribution on the cylinder, the force and the moment exerted on the cylinder are calculated. The flow rate through the gap between the two cylinders is determined as the distance between two cylinders vary. It Is also revealed that the velocity at the far field has finite non-zero value. Special attention is directed to the case of very small distances between two cylinders by way of the lubrication theory.

  • PDF