1 |
D. Boffi and L. Gastaldi, A nite element approach for the immersed boundary method, Comput. & Structures 81 (2003), no. 8-11, 491-501.
DOI
ScienceOn
|
2 |
D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Reprint of the 1998 edition, Springer-Verlag, Berlin, 2001.
|
3 |
E. Givelberg, Immersed nite element method, Preprint.
|
4 |
R. J. LeVeque and Z. L. Li, The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal. 31 (1994), no. 4, 1019-1044.
DOI
ScienceOn
|
5 |
A. Mayo, The fast solution of Poisson's and the biharmonic equations on irregular regions, SIAM J. Numer. Anal. 21 (1984), no. 2, 285-299.
DOI
ScienceOn
|
6 |
A. Mayo, Fast high order accurate solution of Laplace's equation on irregular regions, SIAM J. Sci. Statist. Comput. 6 (1985), no. 1, 144-157.
DOI
|
7 |
C. S. Peskin, Numerical analysis of blood ow in the heart, J. Computational Phys. 25 (1977), no. 3, 220-252.
DOI
ScienceOn
|
8 |
C. S. Peskin, The immersed boundary method, Acta Numer. 11 (2002), 479-517.
DOI
|
9 |
A.-K. Tornberg and B. Engquist, Numerical approximations of singular source terms in differential equations, J. Comput. Phys. 200 (2004), no. 2, 462-488.
DOI
ScienceOn
|
10 |
A.-K. Tornberg and B. Engquist, Regularization techniques for numerical approximation of PDEs with singularities, J. Sci. Comput. 19 (2003), no. 1-3, 527-552.
DOI
|
11 |
L. Zhang, A. Gerstenberger, X. Wang, and W. K. Liu, Immersed nite element method, Comput. Methods Appl. Mech. Engrg. 193 (2004), no. 21-22, 2051-2067,
DOI
ScienceOn
|
12 |
J. T. Beale and A. T. Layton, On the accuracy of nite difference methods for elliptic problems with interfaces, Commun. Appl. Math. Comput. Sci. 1 (2006), 91-119.
DOI
|