DOI QR코드

DOI QR Code

A REGULARIZED CORRECTION METHOD FOR ELLIPTIC PROBLEMS WITH A SINGULAR FORCE

  • Kim, Hyea-Hyun (Department of Applied Mathematics Kyung Hee University)
  • Received : 2010.09.10
  • Published : 2012.09.01

Abstract

An approximation of singular source terms in elliptic problems is developed and analyzed. Under certain assumptions on the curve where the singular source is defined, the second order convergence in the maximum norm can be proved. Numerical results present its better performance compared to previously developed regularization techniques.

Keywords

References

  1. J. T. Beale and A. T. Layton, On the accuracy of nite difference methods for elliptic problems with interfaces, Commun. Appl. Math. Comput. Sci. 1 (2006), 91-119. https://doi.org/10.2140/camcos.2006.1.91
  2. D. Boffi and L. Gastaldi, A nite element approach for the immersed boundary method, Comput. & Structures 81 (2003), no. 8-11, 491-501. https://doi.org/10.1016/S0045-7949(02)00404-2
  3. D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Reprint of the 1998 edition, Springer-Verlag, Berlin, 2001.
  4. E. Givelberg, Immersed nite element method, Preprint.
  5. R. J. LeVeque and Z. L. Li, The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal. 31 (1994), no. 4, 1019-1044. https://doi.org/10.1137/0731054
  6. A. Mayo, The fast solution of Poisson's and the biharmonic equations on irregular regions, SIAM J. Numer. Anal. 21 (1984), no. 2, 285-299. https://doi.org/10.1137/0721021
  7. A. Mayo, Fast high order accurate solution of Laplace's equation on irregular regions, SIAM J. Sci. Statist. Comput. 6 (1985), no. 1, 144-157. https://doi.org/10.1137/0906012
  8. C. S. Peskin, Numerical analysis of blood ow in the heart, J. Computational Phys. 25 (1977), no. 3, 220-252. https://doi.org/10.1016/0021-9991(77)90100-0
  9. C. S. Peskin, The immersed boundary method, Acta Numer. 11 (2002), 479-517. https://doi.org/10.1017/CBO9780511550140.007
  10. A.-K. Tornberg and B. Engquist, Numerical approximations of singular source terms in differential equations, J. Comput. Phys. 200 (2004), no. 2, 462-488. https://doi.org/10.1016/j.jcp.2004.04.011
  11. A.-K. Tornberg and B. Engquist, Regularization techniques for numerical approximation of PDEs with singularities, J. Sci. Comput. 19 (2003), no. 1-3, 527-552. https://doi.org/10.1023/A:1025332815267
  12. L. Zhang, A. Gerstenberger, X. Wang, and W. K. Liu, Immersed nite element method, Comput. Methods Appl. Mech. Engrg. 193 (2004), no. 21-22, 2051-2067, https://doi.org/10.1016/j.cma.2003.12.044