DOI QR코드

DOI QR Code

Effects of force fields for refining protein NMR structures with atomistic force fields and generalized-Born implicit solvent model

  • Jee, Jun-Goo (Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University)
  • 투고 : 2014.04.15
  • 심사 : 2014.06.10
  • 발행 : 2014.06.20

초록

Atomistic molecular dynamics (MD) simulation has become mature enabling close approximation of the real behaviors of biomolecules. In biomolecular NMR field, atomistic MD simulation coupled with generalized implicit solvent model (GBIS) has contributed to improving the qualities of NMR structures in the refinement stage with experimental restraints. Here all-atom force fields play important roles in defining the optimal positions between atoms and angles, resulting in more precise and accurate structures. Despite successful applications in refining NMR structure, however, the research that has studied the influence of force fields in GBIS is limited. In this study, we compared the qualities of NMR structures of two model proteins, ubiquitin and GB1, under a series of AMBER force fields-ff99SB, ff99SB-ILDN, ff99SB-NMR, ff12SB, and ff13-with experimental restraints. The root mean square deviations of backbone atoms and packing scores that reflect the apparent structural qualities were almost indistinguishable except ff13. Qualitative comparison of parameters, however, indicates that ff99SB-ILDN is more recommendable, at least in the cases of ubiquitin and GB1.

키워드

참고문헌

  1. Guntert, P. European biophysics journal : EBJ 38, 129. (2009). https://doi.org/10.1007/s00249-008-0367-z
  2. Lopez-Mendez, B.; Guntert, P. Journal of the American Chemical Society 128, 13112. (2006). https://doi.org/10.1021/ja061136l
  3. Ikeya, T.; Takeda, M.; Yoshida, H.; Terauchi, T.; Jee, J. G.; Kainosho, M.; Guntert, P. Journal of biomolecular NMR 44, 261. (2009). https://doi.org/10.1007/s10858-009-9339-6
  4. Schmidt, E.; Guntert, P. Journal of the American Chemical Society 134, 12817. (2012). https://doi.org/10.1021/ja305091n
  5. Montelione, G. T.; Nilges, M.; Bax, A.; Guntert, P.; Herrmann, T.; Richardson, J. S.; Schwieters, C. D.; Vranken, W. F.; Vuister, G. W.; Wishart, D. S.; Berman, H. M.; Kleywegt, G. J.; Markley, J. L. Structure 21, 1563. (2013). https://doi.org/10.1016/j.str.2013.07.021
  6. Jee, J. G. Bull Korean Chem Soc 31, 2717. (2010). https://doi.org/10.5012/bkcs.2010.31.9.2717
  7. Chen, J.; Im, W.; Brooks, C. L., 3rd Journal of the American Chemical Society 2004, 126, 16038. (2004). https://doi.org/10.1021/ja047624f
  8. Jee, J. G. J Kor Mag Res Soc 17, 11. (2013).
  9. Jee, J. G.; Ahn, H. C. Bull Korean Chem Soc 30, 1139. (2009). https://doi.org/10.5012/bkcs.2009.30.5.1139
  10. Jee, J. G. Bull Korean Chem Soc 34. (2014).
  11. Guntert, P.; Mumenthaler, C.; Wuthrich, K. Journal of molecular biology 273, 283. (1997). https://doi.org/10.1006/jmbi.1997.1284
  12. Case, D. A.; Cheatham, T. E., 3rd; Darden, T.; Gohlke, H.; Luo, R.; Merz, K. M., Jr.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R. J. J Comput Chem 26, 1668. (2005). https://doi.org/10.1002/jcc.20290
  13. Laskowski, R. A.; Rullmannn, J. A.; MacArthur, M. W.; Kaptein, R.; Thornton, J. M. Journal of biomolecular NMR 8, 477. (1996).
  14. Davis, I. W.; Leaver-Fay, A.; Chen, V. B.; Block, J. N.; Kapral, G. J.; Wang, X.; Murray, L. W.; Arendall, W. B., 3rd; Snoeyink, J.; Richardson, J. S.; Richardson, D. C. Nucleic acids research 35, W375. (2007). https://doi.org/10.1093/nar/gkm216
  15. Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. Journal of the American Chemical Society 117, 5179. (1995). https://doi.org/10.1021/ja00124a002
  16. Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Proteins 65, 712. (2006). https://doi.org/10.1002/prot.21123
  17. Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J. L.; Dror, R. O.; Shaw, D. E. Proteins 78, 1950. (2010).
  18. Li, D. W.; Bruschweiler, R. Angew Chem Int Ed Engl 49, 6778. (2010). https://doi.org/10.1002/anie.201001898
  19. Case, D. A.; Darden, T. A.; Cheatham, T. E.; Simmerling, I., C.L.; Wang, J.; Duke, R. E.; Luo, R.; Walker, R. C.; Zhang, W.; Merz, K. M.; Roberts, B.; Hayik, S.; Roitberg, A.; Seabra, G.; Swails, J.; Goetz, A. W.; Kolossvary, I.; Wong, K. F.; Paesani, F.; Vanicek, J.; Wolf, R. M.; Liu, J.; Wu, X.; Brozell, S. R.; Steinbrecher, T.; Gohlke, H.; Cai, Q.; Ye, X.; Wang, J.; Hsieh, M.-J.; Cui, G.; Roe, D. R.; Mathews, D. H.; Seetin, M. G.; Salomon-Ferrer, R.; Sagui, C.; Babin, V.; Luchko, T.; Gusarov, S.; Kovalenko, A.; Kollman, P. A. University of California, San Francisco. 2012.
  20. Bax, A.; Grishaev, A. Curr Opin Struct Biol 15, 563. (2005). https://doi.org/10.1016/j.sbi.2005.08.006
  21. Jee, J. G.; Ikegami, T.; Hashimoto, M.; Kawabata, T.; Ikeguchi, M.; Watanabe, T.; Shirakawa, M. The Journal of biological chemistry 277, 1388. (2002). https://doi.org/10.1074/jbc.M109726200
  22. MacKerell, A. D.; Bashford, D.; Bellott; Dunbrack, R. L.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F. T. K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; Reiher, W. E.; Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.; Watanabe, M.; Wiorkiewicz-Kuczera, J.; Yin, D.; Karplus, M. The Journal of Physical Chemistry B 102, 3586. (1998). https://doi.org/10.1021/jp973084f
  23. Zweckstetter, M. Nature protocols 3, 679. (2008). https://doi.org/10.1038/nprot.2008.36

피인용 문헌

  1. Strategy for Determining the Structures of Large Biomolecules using the Torsion Angle Dynamics of CYANA vol.20, pp.4, 2016, https://doi.org/10.6564/JKMRS.2016.20.4.102