• Title/Summary/Keyword: Focused ion beam (FIB)

Search Result 177, Processing Time 0.023 seconds

Study on Surface Damage of Specimen for Transmission Electron Microscopy(TEM) Using Focused Ion Beam(FIB) (집속 이온빔을 이용한 투과 전자 현미경 시편의 표면 영향에 관한 연구)

  • Kim, Dong-Sik
    • 전자공학회논문지 IE
    • /
    • v.47 no.2
    • /
    • pp.8-12
    • /
    • 2010
  • TEM is a powerful tool for semiconductor material analyses in structure or biological sample in micro structure. TEM observation need to make to coincide specimens for special purpose. in this paper, we have experimented for minimum surface damage on bulk wafer and patterned specimen by various conditions such as accelerating energy, depth of ion beam, ion milling types, and etc. in various specimen preparation methods by FIB (Focus Ion Beam). The optimal qualified specimens are contain low mounts of surface damage(about 5 nm) on patterned specimen.

Optimal Determination of the Fabrication Parameters in Focused Ion Beam for Milling Gold Nano Hole Array (금 나노홀 어레이 제작을 위한 집속 이온빔의 공정 최적화)

  • Cho, Eun Byurl;Kwon, Hee Min;Lee, Hee Sun;Yeo, Jong-Souk
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.5
    • /
    • pp.262-269
    • /
    • 2013
  • Though focused ion beam (FIB) is one of the candidates to fabricate the nanoscale patterns, precision milling of nanoscale structures is not straightforward. Thus this poses challenges for novice FIB users. Optimal determination in FIB parameters is a crucial step to fabricate a desired nanoscale pattern. There are two main FIB parameters to consider, beam current (beam size) and dose (beam duration) for optimizing the milling condition. After fixing the dose, the proper beam current can be chosen considering both total milling time and resolution of the pattern. Then, using the chosen beam current, the metal nano hole structure can be perforated to the required depth by varying the dose. In this experiment, we found the adequate condition of $0.1nC/{\mu}m^2$ dose at 1 pA Ga ion beam current for 100 nm thickness perforation. With this condition, we perforated the periodic square array of elliptical nano holes.

3 Dimensional Machining System using Focused ion Beam (집속 이온빔에 의한 3차원 가공 시스템)

  • 박철우;이종항
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.490-493
    • /
    • 2004
  • There is great difficulty in machine below 10 micrometers by conventional machining methods, such as micro-EDM. However, ultra micro machining using focused ion beam(FIB) is able to machine to 50 nanometers. Bie & moulds techniques are better than one-to-one machining techniques in regards to production costs in the mass production of ultra size structures. Also, it is advantageous to machine die & moulds to the 10 micrometers level by FIB technique rather than other techniques. It is difficult to machine the three dimensional machining, such as micro lens, using FIB system because of their machining characteristics. In this paper, three dimensional machining techniques were properly introduced, and also experiments showed effectiveness of their techniques.

  • PDF

Analysis on FIB-Sputtering Process using Taguchi Method (다구찌 기법을 이용한 FIB-Sputtering 가공 특성 분석)

  • Lee, Seok-Woo;Choi, Byoung-Yeol;Kang, Eun-Goo;Hong, Won-Pyo;Choi, Hon-Zong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.6
    • /
    • pp.71-75
    • /
    • 2006
  • The application of focused ion beam (FIB) technology in micro/nano machining has become increasingly popular. Its usage in micro/nano machining has advantages over contemporary photolithography or other micro/nano machining technologies such as small feature resolution, the ability to process without masks and being accommodating for a variety of materials and geometries. The target of this paper is the analysis of FIB sputtering process according to tilt angle, dwell time and overlap for application of 3D micro and pattern fabrication and to find the effective beam scanning conditions using Taguchi method. Therefore we make the conclusions that tilt angle is dominant parameter for sputtering yield. Burr size is reduced as tilt angle is higher.

집속이온빔(Focused Ion Beam)을 이용한 3차원 나노가공

  • 박철우;이종항
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.11-11
    • /
    • 2004
  • 나노기술은 크게 2가지 접근방법을 가진다. 하나는 위에서 아래로(Top-Down)라는 관점으로 벌크물질로부터 이온빔 등을 이용해 이를 작게 잘라가는 방식이며, 다른 하나는 아래에서 위로(Bottom-Up) 방식으로 재질을 구성하는 분자를 재구성해 원하는 물성 및 특성을 가지도록 만드는 방법이다. 이 두 가지 접근 방법은 원하는 결과를 얻기 위해 상호 보완적으로 사용되기도 한다. Top-Down방식의 대표적인 기기로는 접속이온빔 장치(FIB, Focused Ion Beam)를 등 수 있으며, Bottom-Up방식의 대표적인 기기로는 SPM(Scanning Probe Microscope)을 들 수 있다.(중략)

  • PDF

Improvement of Ion Beam Resolution in FIB Process by Selective Beam Blocking (선택적 빔 차단을 통한 집속이온빔 가공 정밀도 향상)

  • Han, Min-Hee;Han, Jin;Kim, Tae-Gon;Min, Byung-Kwon;Lee, Sang-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.84-90
    • /
    • 2010
  • In focused ion beam (FIB) fabrication processes the ion beam intensity with Gaussian profile has a drawback for high resolution machining. In this paper, the fabrication method to modify the beam profile at substrate using silt mask is proposed to increase the machining resolution at high current. Slit mask is utilized to block the part of beam and transmit only high intensity portion. A nano manipulator is utilized to handle the silt mask. Geometrical analysis on fabricated profile through silt mask was conducted. By utilizing proposed method, improvement of machining resolution was achieved.

Advanced Methodologies for Manipulating Nanoscale Features in Focused Ion Beam

  • Kim, Yang-Hee;Seo, Jong-Hyun;Lee, Ji Yeong;Ahn, Jae-Pyoung
    • Applied Microscopy
    • /
    • v.45 no.4
    • /
    • pp.208-213
    • /
    • 2015
  • Nanomanipulators installed in focused ion beam (FIB), which is used in the lift-out of lamella when preparing transmission electron microscopy specimens, have recently been employed for electrical resistance measurements, tensile and compression tests, and in situ reactions. During the pick-up process of a single nanowire (NW), there are crucial problems such as Pt, C and Ga contaminations, damage by ion beam, and adhesion force by electrostatic attraction and residual solvent. On the other hand, many empirical techniques should be considered for successful pick-up process, because NWs have the diverse size, shape, and angle on the growth substrate. The most important one in the in-situ precedence, therefore, is to select the optimum pick-up process of a single NW. Here we provide the advanced methodologies when manipulating NWs for in-situ mechanical and electrical measurements in FIB.

Transmission Electron Microscope Specimen Preparation of Si-Based Anode Materials for Li-Ion Battery by Using Focused Ion Beam and Ultramicrotome

  • Chae, Jeong Eun;Yang, Jun Mo;Kim, Sung Soo;Park, Ju Cheol
    • Applied Microscopy
    • /
    • v.48 no.2
    • /
    • pp.49-53
    • /
    • 2018
  • A successful transmission electron microscope (TEM) analysis is closely related to the preparation of the TEM specimen and should be followed by the suitable TEM specimen preparation depending on the purpose of analysis and the subject materials. In the case of the Si-based anode material, lithium atoms of formed Li silicide were removed due to ion beam and electron beam during TEM specimen preparation and TEM observation. To overcome the problem, we proposed a new technique to make a TEM specimen without the ion beam damage. In this study, two types of test specimens from the Si-based anode material of Li-ion battery were prepared by respectively adopting the only focused ion beam (FIB) method and the new FIB-ultramicrotome method. TEM analyses of two samples were conducted to compare the Ga ion damage of the test specimen.

Three Dimensional Reconstruction of Structural Defect of Thin Film Transistor Device by using Dual-Beam Focused Ion Beam and Scanning Electron Microscopy (집속이온빔장치와 주사전자현미경을 이용한 박막 트랜지스터 구조불량의 3차원 해석)

  • Kim, Ji-Soo;Lee, Seok-Ryoul;Lee, Lim-Soo;Kim, Jae-Yeal
    • Applied Microscopy
    • /
    • v.39 no.4
    • /
    • pp.349-354
    • /
    • 2009
  • In this paper we have constructed three dimensional images and examined structural failure on thin film transistor (TFT) liquid crystal display (LCD) by using dual-beam focused ion beam (FIB) and IMOD software. Specimen was sectioned with dual-beam focused ion beam. Series of two dimensional images were obtained by scanning electron microscopy. Three dimensional reconstruction was constructed from them by using IMOD software. The short defect between Gate layer and Data layer was found from the result of three dimensional reconstruction. That phenomena made the function of the gate lost and data signal supplied to the electrode though the Drain continuously. That signal made continuous line defect. The result of the three dimensional reconstruction, serial section, SEM imaging by using the FIB will be the foundation of the next advanced study.

Nanohole Fabrication using FIB, EB and AFM for Biomedical Applications

  • Zhou, Jack;Yang, Guoliang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.4
    • /
    • pp.18-22
    • /
    • 2006
  • Although many efforts have been made in making nanometer-sized holes, there is still a major challenge in fabricating individual single-digit nanometer holes in a more controllable way for different materials, size distribution and hole shapes. In this paper we describe our efforts to use a top down approach in nanofabrication method to make single-digit nanoholes. There are three major steps towards the fabrication of a single-digit nanohole. 1) Preparing the freestanding thin film by epitaxial deposition and electrochemical etching. 2) Making sub-micro holes ($0.2{\mu}\;to\;0.02{\mu}$) by focused ion beam (FIB), electron beam (EB), atomic force microscope (AFM), and others methods. 3) Reducing the hole size to less than 10 nm by epitaxial deposition, FIB or EB induced deposition and micro coating. Preliminary work has been done on thin films (30 nm in thickness) preparation, sub-micron hole fabrication, and E-beam induced deposition. The results are very promising.