• Title/Summary/Keyword: Focused Ion Beam

Search Result 278, Processing Time 0.033 seconds

Microscale BTS sculptured by electron beam

  • Choi, Haneul;Jeong, Young Woo;Chang, Hye Jung
    • Applied Microscopy
    • /
    • v.49
    • /
    • pp.4.1-4.2
    • /
    • 2019
  • We applied the advanced bitmap-assisted patterning function of focused ion beam to fabricate microscale sculpture of the 'BangTanSoNyeonDan' known as BTS members, the world-wide famous K-pop boyband. With the help of an electron microscope, you can carve your idols on your accessories at micro scale. Fun applications of electron microscopes are not limited to science.

3 Dimensional Machining System using Focused ion Beam (집속 이온빔에 의한 3차원 가공 시스템)

  • 박철우;이종항
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.490-493
    • /
    • 2004
  • There is great difficulty in machine below 10 micrometers by conventional machining methods, such as micro-EDM. However, ultra micro machining using focused ion beam(FIB) is able to machine to 50 nanometers. Bie & moulds techniques are better than one-to-one machining techniques in regards to production costs in the mass production of ultra size structures. Also, it is advantageous to machine die & moulds to the 10 micrometers level by FIB technique rather than other techniques. It is difficult to machine the three dimensional machining, such as micro lens, using FIB system because of their machining characteristics. In this paper, three dimensional machining techniques were properly introduced, and also experiments showed effectiveness of their techniques.

  • PDF

Development of Nano Machining Technology using Focused ion Beam (FIB를 이용한 나노가공공정 기술 개발)

  • 최헌종;강은구;이석우;홍원표
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.482-486
    • /
    • 2004
  • The application of focused ion beam (FIB) technology in micro/nano machining has become increasingly popular. Its use in micro/nano machining has advantages over contemporary photolithography or other micro/nano machining technologies, such as small feature resolution, the ability to process without masks and being accommodating for a variety of materials and geometries. This paper presents that the recent development and our research goals in FIB nano machining technology are given. The emphasis will be on direct milling, or chemical vapor deposition techniques (CVD), and this can distinguish the FIB technology from the contemporary photolithography process and provide a vital alternative to it. After an introduction to the technology and its FIB principles, the recent developments in using milling or deposition techniques for making various high-quality devices and high-precision components at the micro/nano meter scale are examined and discussed. Finally, conclusions are presented to summarize the recent work and to suggest the areas for improving the FIB milling technology and for studying our future research.

  • PDF

Focused Ion Beam Milling for Nanostencil Lithography (나노스텐실 제작을 위한 집속이온빔 밀링 특성)

  • Kim, Gyu-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.2
    • /
    • pp.245-250
    • /
    • 2011
  • A high-resolution shadow mask, a nanostencil, is widely used for high resolution lithography. This high-resolution shadowmask is often fabricated by a combination of MEMS processes and focused ion beam (FIB) milling. In this study, FIB milling on 500-nm-thin SiN membrane was tested and characterized. 500 nm thick and $2{\times}2$ mm large membranes were made on a silicon wafer by micro-fabrication processes of LPCVD, photolithography, ICP etching and bulk silicon etching. A subsequent FIB milling enabled local membrane thinning and aperture making into the thinned silicon nitride membrane. Due to the high resolution of the FIB milling process, nanoscale apertures down to 60 nm could be made into the membrane. The nanostencil could be used for nanoscale patterning by local deposition through the apertures.

Focused ion beam-scanning electron microscope examination of high burn-up UO2 in the center of a pellet

  • Noirot, J.;Zacharie-Aubrun, I.;Blay, T.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.2
    • /
    • pp.259-267
    • /
    • 2018
  • Focused ion beam-scanning electron microscope and electron backscattered diffraction examinations were conducted in the center of a $73\;GWd/t_U\;UO_2$ fuel. They showed the formation of subdomains within the initial grains. The local crystal orientations in these domains were close to that of the original grain. Most of the fission gas bubbles were located on the boundaries. Their shapes were far from spherical and far from lenticular. No interlinked bubble network was found. These observations shed light on previous unexplained observations. They plead for a revision of the classical description of fission gas release mechanisms for the center of high burn-up $UO_2$. Yet, complementary detailed observations are needed to better understand the mechanisms involved.

Fabrication of Micro/nanoscale Cutting Tool Geometry of Single Crystal Diamond Tool by Focused Ion Beam (집속이온빔(Focused Ion Beam)에 의한 단결정 다이아몬드 공구의 마이크로/나노스케일 절삭공구 형상 제작)

  • Baek, Seung Yub;Jang, Sung Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.3
    • /
    • pp.207-213
    • /
    • 2014
  • A study was carried out to fabricate the cutting tool geometry with micro/nanoscale on the single crystal diamond tool by using the FIB. The FIB technique is an ideal tool for TEM sample preparation that allows for the fabrication of electron-transparent foils. The FIB is appropriate techniques to sample and subsequently define the chemical composition and the structural state of mineral inclusion on the micro/nanoscale. The combination of FIB with a SEM allows for 3D information to be obtained from samples including 3D imaging. Cutting strategies were demonstrated to improve the performance of cutting tool geometry and to generate high aspect ratio micro cutting tool. A finely focused beam of 30keV Ga+ ions was used to mill cutting tool shapes for various micro patterns. Therefore FIB sputtering is used to shape a variety of cutting tools with dimensions in the $1-5{\mu}m$ range and cutting edge radii of curvature of under 50nm.

Cross-Sectional Transmission Electron Microscopy Specimen Preparation Technique by Backside Ar Ion Milling

  • Yoo, Jung Ho;Yang, Jun-Mo
    • Applied Microscopy
    • /
    • v.45 no.4
    • /
    • pp.189-194
    • /
    • 2015
  • Backside Ar ion milling technique for the preparation of cross-sectional transmission electron microscopy (TEM) specimens, and backside-ion milling combined with focused ion beam (FIB) operation for electron holography were introduced in this paper. The backside Ar ion milling technique offers advantages in preparing cross-sectional specimens having thin, smooth and uniform surfaces with low surface damages. The back-side ion milling combined with the FIB technique could be used to observe the two-dimensional p-n junction profiles in semiconductors with the sample quality sufficient for an electron holography study. These techniques have useful applications for accurate TEM analysis of the microstructure of materials or electronic devices such as arrayed hole patterns, three-dimensional integrated circuits, and also relatively thick layers (> $1{\mu}m$).

Optimal Determination of the Fabrication Parameters in Focused Ion Beam for Milling Gold Nano Hole Array (금 나노홀 어레이 제작을 위한 집속 이온빔의 공정 최적화)

  • Cho, Eun Byurl;Kwon, Hee Min;Lee, Hee Sun;Yeo, Jong-Souk
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.5
    • /
    • pp.262-269
    • /
    • 2013
  • Though focused ion beam (FIB) is one of the candidates to fabricate the nanoscale patterns, precision milling of nanoscale structures is not straightforward. Thus this poses challenges for novice FIB users. Optimal determination in FIB parameters is a crucial step to fabricate a desired nanoscale pattern. There are two main FIB parameters to consider, beam current (beam size) and dose (beam duration) for optimizing the milling condition. After fixing the dose, the proper beam current can be chosen considering both total milling time and resolution of the pattern. Then, using the chosen beam current, the metal nano hole structure can be perforated to the required depth by varying the dose. In this experiment, we found the adequate condition of $0.1nC/{\mu}m^2$ dose at 1 pA Ga ion beam current for 100 nm thickness perforation. With this condition, we perforated the periodic square array of elliptical nano holes.

Development of a High Brightness Ion Beam Extraction System using Micro-size Aperture (마이크로 사이즈 인출구경을 이용한 고휘도 이온빔 인출 시스템 개발)

  • Kim Yoon-Jae;Park Dong-Hee;Jeong Hyeong-Seol;Hwang Yong-Seok
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.19-23
    • /
    • 2005
  • In order to develop a high brightness ion source using plasma, the ion beam extraction system with an aperture of $100{\mu}m$ in diameter has been designed and constructed. It is observed that over 500nA of He ion beam current can be extracted. With such an optimized condition, $\~10^3\;A/cm^2sr$ beam brightness can be measured by emittance scanner, which is believed to be a promising result for developing next generation FIB.

  • PDF

Development of Inductively Coupled Plasma Gas Ion Source for Focused Ion Beam (유도결합형 플라즈마 소스를 이용한 집속 이온빔용 가스 이온원 개발)

  • Lee, Seung-Hun;Kim, Do-Geun;Kang, Jae-Wook;Kim, Tae-Gon;Min, Byung-Kwon;Kim, Jong-Kuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.1
    • /
    • pp.19-23
    • /
    • 2011
  • Recently, focused ion beam (FIB) applications have been investigated for the modification of VLSI circuit, the MEMS processing, and the localized ion doping, A multi aperture FIB system has been introduced as the demands of FIB applications for high speed and large area processing increase. A liquid metal ion source has problems, a large angular divergence and a metal contamination into a substrate. In this study, a gas ion source was introduced to replace a liquid metal ion source. The gas ion source generated inductively coupled plasma (ICP) in a quartz tube (diameter: 45 mm). Ar gas fed into the quartz was ionized by a 2 turned radio frequency antenna. The Ar ions were extracted by 2 extraction grids. The maximum extraction voltage was 10 kV. A numerical simulation was used to optimize the design of extraction grids and to predict an ion trajectory. As a result, the maximum ion current density was 38 $mA/cm^2$ and the spread of ion energy was 1.6 % for the extraction voltage.