Browse > Article
http://dx.doi.org/10.1016/j.net.2017.12.002

Focused ion beam-scanning electron microscope examination of high burn-up UO2 in the center of a pellet  

Noirot, J. (CEA, DEN, DEC, SA3E)
Zacharie-Aubrun, I. (CEA, DEN, DEC, SA3E)
Blay, T. (CEA, DEN, DEC, SA3E)
Publication Information
Nuclear Engineering and Technology / v.50, no.2, 2018 , pp. 259-267 More about this Journal
Abstract
Focused ion beam-scanning electron microscope and electron backscattered diffraction examinations were conducted in the center of a $73\;GWd/t_U\;UO_2$ fuel. They showed the formation of subdomains within the initial grains. The local crystal orientations in these domains were close to that of the original grain. Most of the fission gas bubbles were located on the boundaries. Their shapes were far from spherical and far from lenticular. No interlinked bubble network was found. These observations shed light on previous unexplained observations. They plead for a revision of the classical description of fission gas release mechanisms for the center of high burn-up $UO_2$. Yet, complementary detailed observations are needed to better understand the mechanisms involved.
Keywords
Electron BackScattered Diffraction; Fission Gas Bubbles; Fission Gas Release; Focused Ion Beam-Scanning Electron; Microscope; Grain; High Burn-Up; $UO_2$;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 M. Chollet, C. Cozzo, D. Grolimund, M. Martin, J. Bertsch, From fresh to 9-cycle UO2 fuel: microstructure evolution studied by synchrotron X-ray diffraction, in: WRFPM, Jeju (Korea), 2017.
2 S.T. Murphy, P. Fossati, R.W. Grimes, J. Nucl. Mater. 466 (2015) 634-637.   DOI
3 L.V. Brutzel, E. Vincent-Aublant, J. Nucl. Mater. 377 (2008) 522-527.   DOI
4 D.R. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements, 1976.
5 J.R. Matthews, M.H. Wood, Eur. Appt. Res. Rept. Nucl. Sci. Technol. 5 (1984).
6 D. Baron, L. Hallstadius, Fuel performance of light water reactors (Uranium Oxide and MOX), in: Comprehensive Nuclear Materials, Elsevier, 2012.
7 I. Zacharie, S. Lansiart, P. Combette, M. Trotabas, M. Coster, M. Groos, J. Nucl. Mater. 255 (1998) 92-104.   DOI
8 S. Valin, A. Mocellin, G. Eminet, S. Ravel, Modelling the behaviour of intergranular fission gas during out-of-pile annealing, in: Fission Gas Behaviour in Water Reactor Fuels, NEA, Ed, OCDE, Cadarache (France), 2000, pp. 357-368.
9 R.J. White, J. Nucl. Mater. 325 (2004) 61-77.   DOI
10 C. Baker, J.C. Killeen, Fission gas release during post irradiation annealing of UO2, in: Int. Conf. On Materials for Nuclear Reactor Core Applications, BNES Bristol (UK), 1987.
11 P. Cook, E.C. Matthews, M. Barker, R. Foster, A. Donaldson, C. Ott, D. Papaioannou, C.T. Walker, Post-irradiation examination and testing of BNFL SBR MOX fuel, in: Proceedings of the 2004 International Meeting on LWR Fuel Performance, Orlando, Florida (USA), 2004.
12 M.A. Barker, C.P. Chatwin, S.L. Owens, Experimental and computational analysis of the development of intergranular bubbles in oxide fuels, in: TOP-FUEL, Paris (France), 2009.
13 J.A. Turnbull, M.O. Tucker, Phil. Mag. 30 (1) (1974) 47-63.   DOI
14 I. Zacharie-Aubrun, T. Blay, C. Ciszak, C. Cagna, S. Chalal, A new look on irradiated fuels at the CEA Cadarache, in: NuMat, Montpellier, (France), 2016.
15 I. Zacharie-Aubrun, T. Blay, New capabilities of analyses with a versatile nuclearized dual beam, in: Hotlab, Karlsruhe (Germany), 2016.
16 P. Guedeney, M. Trotabas, M. Boschiero, C. Forat, Standard PWR fuel rod characterization at high burn-up, in: International Topical Meeting on LWR Fuel Performance, 1991. Avignon (France).
17 J. Noirot, T. Blay, J. Lamontagne, L. Fayette, Y. Pontillon, X. Pujol, Size and radial origin of fragments formed while heating a 83 GWd/tU PWR fuel up to $1200^{\circ}C$, in: LOCA Workshop, Fuel Fragmentation, Relocation and Dispersal (FFRD) - Experimental Basis, Mechanisms and Modelling Approaches, Aix-en-Provence (France), 2015.
18 M. Chollet, G. Kuri, D. Grolimund, M. Martin, J. Bertsch, Synchrotron XRD analysis of irradiated UO2 fuel at various burn-up, in: TopFuel, Boise, Idaho (USA), 2016.
19 H. Stehle, J. Nucl. Mater. 153 (1988) 3-15.   DOI
20 N. Itagaki, K. Ohira, K. Tsuda, G. Fischer, T. Ota, Fission gas release and pellet microstructure change of high burnup BWR fuel, in: Technical Committee Meeting on Advances in Fuel Pellet Technology for Improved Performance at High Burnup, Tokyo (Japan), IAEA, Tokyo (Japan), 1996.
21 M.S. Veshchunov, J. Nucl. Mater. 277 (2000) 67-81.   DOI
22 M.S. Veshchunov, J. Nucl. Mater. 374 (2008) 44-53.   DOI
23 L. Noirot, Nucl. Eng. Des. 241 (2011) 2099-2118.   DOI
24 J. Noirot, L. Noirot, L. Desgranges, J. Lamontagne, T. Blay, B. Pasquet, E. Muller, in: Fission Gas Inventory in PWRHigh Burnup Fuel : Experimental Characterization and Modeling, 2004. ANS LWR Fuel Performance, Orlando, Florida (USA).
25 L. Noirot, J. Nucl. Sci. Technol. 43 (2006) 1149-1160.   DOI
26 V. Marelle, P. Goldbronn, S. Bernaud, E. Castelier, J. Julien, K. Nkonga, L. Noirot, I. Ramiere, New developments in ALCYONE 2.0 fuel performance code, in: TOPFUEL, Boise, Idaho (USA), 2016.
27 J. Noirot, C. Gonnier, L. Desgranges, Y. Pontillon, J. Lamontagne, LWR Fuel Gas Characterization at CEA Cadarache LECA-STAR Hot Laboratory, 2009. IAEA-TECDOC-CD-1635.
28 J. Noirot, I. Zacharie-Aubrun, L. Desgranges, K. Hanifi, J. Lamontagne, B. Pasquet, C. Valot, P. Blanpain, H. Cognon, Nucl. Eng. Technol. 41 (2009) 155-162.   DOI
29 J. Noirot, I. Zacharie-Aubrun, K. Hanifi, J. Lamontagne, B. Pasquet, C. Valot, P. Blanpain, H. Cognon, High burnup changes in UO2 fuels irradiated up to 83 GWd/t in $M5^{(R)}$ claddings, in: WRFPM, Seoul (South Korea), 2008.