• Title/Summary/Keyword: Foam generation

Search Result 96, Processing Time 0.022 seconds

Cobalt Vanadium Heterointerface Modulated Co2P/VP Heterostructure Electrocatalyst for Robust Water Splitting

  • Purna Prasad Dhakal;Ganesh Bhandari;Hoang Tuan Nguyen;Duy Thanh Tran;Nam Hoon Kim;Joong Hee Lee
    • Composites Research
    • /
    • v.37 no.4
    • /
    • pp.296-300
    • /
    • 2024
  • The rational synthesis of efficient transitional metal phosphides (TMPs) could revolutionize green hydrogen production via water splitting. Hydrogen, with the highest energy density among fuels, stands out as an excellent alternative to address environmental issues and ensure sustainable future energy generation. However, the limited availability of state-of-the-art electrocatalysts like Pt/C and RuO2, used for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively, necessitates the development of cost-effective and non-noble electrocatalysts for green hydrogen production. In this context, we present a novel heterointerface-modulated heterostructure design comprising ultrathin nanosheets of a 3D Co2P/VP heterostructure on a conductive nickel foam substrate. This heterostructure demonstrates remarkably low overpotentials of 96 mV for HER and 237 mV for OER at 10 mA cm-2. The material's robust electrochemical kinetics are further evidenced by low Tafel slopes of 68.28 mV dec-1 and 116.54 mV dec-1, respectively.

Three-dimensional Simulation of Wave Reflection and Pressure Acting on Circular Perforated Caisson Breakwater by OLAFOAM (OLAFOAM에 기초한 원형유공케이슨 방파제의 반사율 및 작용파압에 관한 3차원시뮬레이션)

  • Lee, Kwang-Ho;Bae, Ju-Hyun;Kim, Sang-Gi;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.286-304
    • /
    • 2017
  • In this study, we proposed a new-type of circular perforated caisson breakwater consisting of a bundle of latticed blocks that can be applied to a small port such as a fishing port, and numerically investigated the hydraulic characteristics of the breakwater. The numerical method used in this study is OLAFOAM which newly added wave generation module, porous media analysis module and reflected wave control module based on OpenFOAM that is open source CFD software published under the GPL license. To investigate the applicability of OLAFOAM, the variations of wave pressure acting on the three-dimensional slit caisson were compared to the previous experimental results under the regular wave conditions, and then the performance for irregular waves was examined from the reproducibility of the target irregular waves and frequency spectrum analysis. As a result, a series of numerical simulations for the new-type of circular perforated caisson breakwaters, which is similar to slit caisson breakwater, was carried out under the irregular wave actions. The hydraulic characteristics of the breakwater such as wave overtopping, reflection, and wave pressure distribution were carefully investigated respect to the significant wave height and period, the wave chamber width, and the interconnectivity between them. The numerical results revealed that the wave pressure acting on the new-type of circular perforated caisson breakwaters was considerably smaller than the result of the impermeable vertical wall computed by the Goda equation. Also, the reflection of the new-type caisson breakwater was similar to the variation range of the reflection coefficient of the existing slit caisson breakwater.

A Case Study of "Engineering Design" Education with Emphasize on Hands-on Experience (기계공학과에서 제시하는 Hands-on Experience 중심의 "엔지니어링 디자인" 교과목의 강의사례)

  • Kim, Hong-Chan;Kim, Ji-Hoon;Kim, Kwan-Ju;Kim, Jung-Soo
    • Journal of Engineering Education Research
    • /
    • v.10 no.2
    • /
    • pp.44-61
    • /
    • 2007
  • The present investigation is concerned chiefly with new curriculum development at the Department of Mechanical System & Design Engineering at Hongik University with the aim of enhancing creativity, team working and communication capability which modern engineering education is emphasizing on. 'Mechanical System & Design Engineering' department equipped with new curriculum emphasizing engineering design is new name for mechanical engineering department in Hongik University. To meet radically changing environment and demands of industries toward engineering education, the department has shifted its focus from analog-based and machine-centered hard approach to digital-based and human-centered soft approach. Three new programs of Introduction to Mechanical System & Design Engineering, Creative Engineering Design and Product Design emphasize hands-on experiences through project-based team working. Sketch model and prototype making process is strongly emphasized and cardboard, poly styrene foam and foam core plate are provided as working material instead of traditional hard engineering material such as metals material because these three programs focus more on creative idea generation and dynamic communication among team members rather than the end results. With generative, visual and concrete experiences that can compensate existing engineering classes with traditional focus on analytic, mathematical and reasoning, hands-on experiences can play a significant role for engineering students to develop creative thinking and engineering sense needed to face ill-defined real-world design problems they are expected to encounter upon graduation.

Numerical simulation of three-dimensional flow and heat transfer characteristics of liquid lead-bismuth

  • He, Shaopeng;Wang, Mingjun;Zhang, Jing;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1834-1845
    • /
    • 2021
  • Liquid lead-bismuth cooled fast reactor is one of the most promising reactor types among the fourth-generation nuclear energy systems. The flow and heat transfer characteristics of lead-bismuth eutectic (LBE) are completely different from ordinary fluids due to its special thermal properties, causing that the traditional Reynolds analogy is no longer recommended and appropriate. More accurate turbulence flow and heat transfer model for the liquid metal lead-bismuth should be developed and applied in CFD simulation. In this paper, a specific CFD solver for simulating the flow and heat transfer of liquid lead-bismuth based on the k - 𝜀 - k𝜃 - 𝜀𝜃 model was developed based on the open source platform OpenFOAM. Then the advantage of proposed model was demonstrated and validated against a set of experimental data. Finally, the simulation of LBE turbulent flow and heat transfer in a 7-pin wire-wrapped rod bundle with the k - 𝜀 - k𝜃 - 𝜀𝜃 model was carried out. The influence of wire on the flow and heat transfer characteristics and the three-dimensional distribution of key thermal hydraulic parameters such as temperature, cross-flow velocity and Nusselt number were studied and presented. Compared with the traditional SED model with a constant Prt = 1.5 or 2.0, the k - 𝜀 - k𝜃 - 𝜀𝜃 model is more accurate on predicting the turbulence flow and heat transfer of liquid lead-bismuth. The average relative error of the k - 𝜀 - k𝜃 - 𝜀𝜃 model is reduced by 11.1% at most under the simulation conditions in this paper. This work is meaningful for the thermal hydraulic analysis and structure design of fuel assembly in the liquid lead-bismuth cooled fast reactor.

3D Porous Foam-based Triboelectric Nanogenerators for Energy Harvesting (3차원 기공구조를 이용한 정전기반 에너지 하베스팅 나노발전기 소자제조)

  • Jeon, Sangheon;Jeong, Jeonghwa;Hong, Suck Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.1
    • /
    • pp.9-15
    • /
    • 2019
  • Here, we present a facile route to fabricate a vertically stacked 3D porous structure-based triboelectric nanogenerator (TENG) that can be used to harvest energy from the friction in a repetitive contact-separation mode. The unit component of TENG consists of thin Al foil electrodes integrated with microstructured 3D foams such as Ni, Cu, and polyurethane (PU), which provide advantageous tribo-surfaces specifically to increase the friction area to the elastomeric counter contact surfaces (i.e., polydimethylsiloxane, PDMS). The periodic contact/separation-induced triboelectric power generation from a single unit of the 3D porous structure-based TENG was up to $0.74mW/m^2$ under a mild condition. To demonstrate the potential applications of our approach, we applied our TENGs to small-scale devices, operating 48 LEDs and capacitors. We envision that this energy harvesting technology can be expanded to the applications of sustainably operating portable electronic devices in a simple and cost-effective manner by effectively harvesting wasted energy resources from the environment.

Generation of Cutting Path Data for Two Steps of the Cutting Process in Full- Automated VLM-ST (VLM-ST 공정의 완전 자동화를 위한 2단계 절단 경로 데이터 생성 방법에 관한 연구)

  • 이상호;안동규;김효찬;양동열;박두섭;채희창
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.140-148
    • /
    • 2004
  • A novel rapid prototyping (RP) process, a full-automated transfer type variable lamination manufacturing process (Full-automated VLM-ST) has been developed. In the full-automated VLM-ST process, a vacuum chuck and a rectilinear motion system transfer the EPS foam material in the form of the plate with two pilot holes to the rotary supporting stage. The supplied material is then cut into an automated unit shape layer (AUSL) with a desired width, a desired length, a desired slope on the side surface, and a pair of reference shapes, which is called the guide shape (GS)’, including two pilot holes in accordance with CAD data through cutting in two steps using a four-axis synchronized hotwire cutter. Then, each AUSL is stacked by setting each AUSL with two pilot holes in the building plate with two pilot pins, and subsequently, adhesive is applied onto the top surface of the stacked AUSL by a bonding roller and pressure is simultaneously given to the bottom surface of the stacked AUSL. Finally, three-dimensional shapes are rapidly and automatically fabricated. This paper describes the method to generate guide shapes in AUSL data for the full-automated VLM-ST process. In order to examine the applicability of the method to generate guide shapes, three-dimensional shapes, such as a piston shape and a human head shape, are fabricated from the full-automated VLM-ST apparatus.

Electricity Generation Using Cyanobacteria Synechocystis PCC 6803 in Photosynthetic Bio-Electrochemical Fuel Cell (남조류 Synechocystis PCC 6803을 이용한 생물전기화학적 물분해 전기 생산)

  • Kim, Min-Jin;Oh, You-Kwan;Kim, Mi-Sun
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.6
    • /
    • pp.529-536
    • /
    • 2008
  • Cyanobacteria Synechocystis PCC 6803 or the extracted thylakoid membrane from this strain was appled to photosynthetic bio-electrochemical fuel cell(PBEFC) for the production of hydrogen under the illumination of 48Klux using halogen lamp. PBEFC was composed of anode, cathode and membrane between them. Electrode material was carbon paper while electron mediator and receptor were added phenazine methosulfate(PMS) and potassium ferricyanide respectively. When water and 50 mM tricine buffer and $300{\mu}M$ PMS were added to the anode under the light condition, PBEFC produced the current density $4.4{\times}10^{-5}\;mA/cm^2$, $1.4{\times}10^{-4}\;mA/cm^2$ and $2.4{\times}10^{-4}\;mA/cm^2$, respectively. And the addition of the thylakoid membrane to the system increased current density to $1.3{\times}10^{-3}\;mA/cm^2$. Two times increase of the thylakoid membrane into the anode doubled the current density to $2.6{\times}10^{-3}\;mA/cm^2$. But the current density was not increased proportionally to the amount of thylakoid membrane increased. The system was unstable to measure the electricity output due to the foam production in the anode. Addition of triton X-100 and tween 80 stabilized the system to measure the electricity output but the current density was not increased higher than $8.4{\times}10^{-4}\;mA/cm^2$ and $2.3{\times}10^{-3}\;mA/cm^2$. When the thylakoid membrane was substituted to Synechocystis PCC 6803 cells of four-day culture which has chlorophyll contents $20.5{\mu}g/m{\ell}$, maximum current density was $1.3{\times}10^{-3}\;mA/cm^2$ with $1\;k{\Omega}$ resistance.

Results of a Round-Robin Test for the Draft International Standard on FT-IR Gas Analysis of Fire Effluents from a Cone Calorimeter (콘칼로리미터 연소가스 FT-IR 분석을 위한 국제표준 초안의 비교시험 결과분석)

  • Choi, Jung-Min;Park, Kye-Won;Jeong, Jae-Gun
    • Fire Science and Engineering
    • /
    • v.33 no.3
    • /
    • pp.1-8
    • /
    • 2019
  • The international standard for FT-IR gas analysis of fire effluents in ISO 5660-1 cone calorimeter has been being developed in ISO TC 92. A comparison of the round-robin test of WD 21397 was conducted with six participating laboratories in 2018. The test specimens were PMMA, rigid PU foam board, and PVC flooring. The measurement quantities were the time-to-ignition, peak heat release rate, total heat release, and effective heat of combustion for a cone calorimeter test and peak gas concentration, gas generation, and gas yield for FT-IR gas analysis. No outliers were identified. For the cone calorimeter quantities, the repeatability and reproducibility were 1.5% and 9.8%, respectively. For FT-IR gas analysis, the repeatability and reproducibility was 12.9% and 27.9%, respectively.

The Study of Advanced Propeller Blade for Next Generation Turboprop Aircraft -Part II. Static Structural Design and Test (차세대 터보프롭 항공기용 최신 프로펠러 블레이드 연구 -Part II. 정적 구조 설계 및 시험)

  • Choi, Won;Park, Hyun-Bum;Kong, Chang-Duk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.4
    • /
    • pp.336-343
    • /
    • 2014
  • Modern advanced-turboprop propellers are required to have high structural strength to cope with the thrust requirement at high speed. The high stiffness and strength carbon/epoxy composite material is used for the major structure and skin-spar-foam sandwich structural type is adopted for advantage in terms of the blade weight. As a design procedure for the present study, the structural design load is estimated through investigation on aerodynamic load and then flanges of spars from major bending loads and the skin from shear loads are sized using the netting rule and Rule of Mixture. In order to investigate the structural safety and stability, stress analysis is performed by finite element analysis code MSC. NASTRAN. It is found that current methodology of composite structure design is a valid method through the static structural test of prototype blade.

Evaluation of the Reaction-to-fire Performance of Pipe Insulation Material using Small Room Test (룸코너 시험을 이용한 배관용 보온재의 난연성능 분석)

  • Lim, Ohk Kun;Nam, Dong-gun;Jang, Hyo-Yeon
    • Fire Science and Engineering
    • /
    • v.33 no.4
    • /
    • pp.1-8
    • /
    • 2019
  • Reaction-to-fire performance of pipe insulation materials should be approved in accordance with KS standards prior to installing water-based suppression systems because several fire accidents are initiated from insulation materials around ceilings or concealed space. A small room test to evaluate the reaction-to-fire performance of the polyethylene foam and elastomeric pipe insulation materials was conducted according to ISO 20632. Different fire growth rate and heat release rate are observed depending on the materials and construction methods. In order to improve a fire safety, the reaction-to-fire performance of pipe insulation material needs to be subdivided with regard to the heat release rate and smoke generation. Furthermore, the characteristics of the applying space are also required to be considered. Subsidiary materials for installation process such as tape and adhesive are found to provide an adverse effect to maintain a fire safety.