DOI QR코드

DOI QR Code

Results of a Round-Robin Test for the Draft International Standard on FT-IR Gas Analysis of Fire Effluents from a Cone Calorimeter

콘칼로리미터 연소가스 FT-IR 분석을 위한 국제표준 초안의 비교시험 결과분석

  • Choi, Jung-Min (Fire Safety & Building Environment Research Team, Fire Insurers Laboratories of Korea) ;
  • Park, Kye-Won (Fire Safety & Building Environment Research Team, Fire Insurers Laboratories of Korea) ;
  • Jeong, Jae-Gun (Fire Safety & Building Environment Research Team, Fire Insurers Laboratories of Korea)
  • 최정민 (한국화재보험협회 부설 방재시험연구원 화재환경시스템팀) ;
  • 박계원 (한국화재보험협회 부설 방재시험연구원 화재환경시스템팀) ;
  • 정재군 (한국화재보험협회 부설 방재시험연구원 화재환경시스템팀)
  • Received : 2019.03.05
  • Accepted : 2019.04.18
  • Published : 2019.06.30

Abstract

The international standard for FT-IR gas analysis of fire effluents in ISO 5660-1 cone calorimeter has been being developed in ISO TC 92. A comparison of the round-robin test of WD 21397 was conducted with six participating laboratories in 2018. The test specimens were PMMA, rigid PU foam board, and PVC flooring. The measurement quantities were the time-to-ignition, peak heat release rate, total heat release, and effective heat of combustion for a cone calorimeter test and peak gas concentration, gas generation, and gas yield for FT-IR gas analysis. No outliers were identified. For the cone calorimeter quantities, the repeatability and reproducibility were 1.5% and 9.8%, respectively. For FT-IR gas analysis, the repeatability and reproducibility was 12.9% and 27.9%, respectively.

ISO TC 92에서는 콘칼로리미터의 연소가스를 FT-IR 방식의 가스분석기로 분석하기 위한 표준을 개발하고 있다. 2018년에는 표준 초안(WD 21397)의 절차에 따라 6개 기관이 참여하여 표준 초안의 반복성 및 재현성을 평가하였다. 시험대상 시료는 polymethyl methacrylate (PMMA), 경질 폴리우레탄 보드 및 PVC 장판이었고 콘칼로리미터 시험결과 중 착화시간(s), 최대 열방출률(kW·m-2), 총 방출열량(MJ·m-2) 및 유효연소열(MJ·m-2·kg-1)을, 그리고 FT-IR 가스분석결과 중 독성가스의 최대 농도(µL·L-1), 가스 발생량(g) 및 가스 수율(g·g-1)을 ISO 5725-2에 따라 통계 분석하여 정밀도를 평가하였다. 이상치(outlier)는 발견되지 않았으며 콘칼로리미터 시험의 반복성(sr/m)은 1.5%, 재현성(sR/m)은 9.8%로 나타났고 FT-IR 가스분석의 반복성은 12.9%, 재현성은 27.9%로 나타났다.

Keywords

References

  1. ISO 5660-1:2015, "Fire Tests : Reaction to Fire Test - Part 1: Rate of Heat Release from Building Products (Cone calorimeter method)", Geneva (2015).
  2. S. S. Kim, N. W. Cho and D. H. Lee, "A Research for Assessment Fire Toxic Gas of Construction Material Using FT-IR and FED", Journal of Korean Institute of Fire Science and Engineering, Vol. 25, No. 6, pp. 27-31 (2011).
  3. T. Fateh, T. Rogaume, J. Luche, F. Richard and F. Jabouille, "Characterization of the Thermal Decomposition of Two Kinds of Plywood with a Cone Calorimeter - FTIR Apparatus", Journal of Analytical and Applied Pyrolysis, Vol. 107, pp. 87-100 (2014). https://doi.org/10.1016/j.jaap.2014.02.008
  4. J. M. Choi, "A Study on Developing the Standard for Combining the Cone Calorimeter with FT-IR analyzer", Proceedings of Standard and Standardization Annual Spring Conference, p. 44 (2017).
  5. J. M. Choi, "Survey Study on Gas Sampling System of FT-IR with ISO 5660-1 Cone Calorimeter", Proceedings of Annual Symposium 2017, Japanese Association of Fire Science and Engineering, pp. 294-295 (2017).
  6. ISO 5725-2:1994, "Accuracy (Trueness and Precision) of Measurement Methods and Results - Part2 : Basic Method for the Determination of Repeatability and Reproducibility of a Standard Measurement Method", Geneva (1994).
  7. ISO 13571:2012, "Life-threatening Components of Fire-Guidelines for the Estimation of Time to Compromised Tenability in Fires", Geneva (2012).
  8. ISO 19702:2015, "Guidance for Sampling and Analysis of Toxic Gases and Vapours in Fire Effluents using Fourier Transform Infrared (FT-IR) Spectroscopy", Geneva (2015).
  9. J. M. Choi, "Experiment Study on Selection of Location of Gas Sampling Probe in Cone Calorimeter", Proceedings of 2018 Spring Annual Conference, Korean Institute of Fire Science and Engineering, pp. 89-90 (2018).
  10. E. Guillaume and Laurent Saragoza, "Application of FTIR Analyzers to Fire Gases Progress in Apparatus and Method Validation for Quantitative analysis", Proceedings of 14th Conference of Fire and Materials, Sanfrancisco (2015).
  11. T. R. Hull and A. A. Stec, "Fire toxicity", Chap. 1, pp. 12-13, Woodhead Publishing Limited, Cambridge, UK (2010).
  12. T. Hakkarainen, E. Mikkola, J. Laperre, F. Gensous, P. Fardell, Y. Le Tallec, C. Baiocchi, K. Paul, et al., "Smoke Gas Analysis by Fourier Transform Infrared Spectroscopy - Summary of the SAFIR Project Results", Fire and Materials, Vol. 24, pp. 101-112 (2000). https://doi.org/10.1002/1099-1018(200003/04)24:2<101::AID-FAM729>3.0.CO;2-2
  13. ISO 12828-1:2011, "Validation Method for Fire Gas Analysis-Part 1: Limits of Detection and Quantification", Geneva (2011).
  14. ISO/DTS 12828-3, "Validation Method for Fire Gas Analysis-Part 3: Considerations related to interlaboratory trials with fire effluents chemical analyses" ISO TC 92/SC 3 (2019)