DOI QR코드

DOI QR Code

차세대 터보프롭 항공기용 최신 프로펠러 블레이드 연구 -Part II. 정적 구조 설계 및 시험

The Study of Advanced Propeller Blade for Next Generation Turboprop Aircraft -Part II. Static Structural Design and Test

  • Choi, Won (Korea Aerospace Industries, LTD.) ;
  • Park, Hyun-Bum (Division of Defence Science & Technology, Howon University) ;
  • Kong, Chang-Duk (Department of Aerospace Engineering, Chosun University)
  • 투고 : 2013.07.24
  • 심사 : 2014.02.28
  • 발행 : 2014.04.01

초록

깃끝단 후퇴각을 가지는 현대 터보프롭 항공기의 최신 프로펠러는 고속으로 비행할 수 있는 추력을 얻기 위해 구조적으로 높은 강도가 요구된다. 본 연구에서는 프로펠러 구조 설계 시 고강도 및 고강성의 특성을 지닌 카본/에폭시 복합재료가 적용되었으며, 경량화를 위하여 스킨-스파-폼 샌드위치 구조 형태를 채택하였다. 구조 설계를 위한 구조 하중은 블레이드에 작용하는 공력하중을 분석하여 결정하였으며, 스파 플렌지는 굽힘 하중을 담당하고 스킨은 전단 하중을 담당하도록 복합재료 설계 개념을 반영하였다. 구조 안전성을 평가하기 위하여 상용 유한 요소 해석 코드인 나스트란을 활용하여 구조 해석을 수행하였다. 시제품 블레이드의 구조 시험을 통하여 적용된 구조설계 방법론이 적절함을 확인하였다.

Modern advanced-turboprop propellers are required to have high structural strength to cope with the thrust requirement at high speed. The high stiffness and strength carbon/epoxy composite material is used for the major structure and skin-spar-foam sandwich structural type is adopted for advantage in terms of the blade weight. As a design procedure for the present study, the structural design load is estimated through investigation on aerodynamic load and then flanges of spars from major bending loads and the skin from shear loads are sized using the netting rule and Rule of Mixture. In order to investigate the structural safety and stability, stress analysis is performed by finite element analysis code MSC. NASTRAN. It is found that current methodology of composite structure design is a valid method through the static structural test of prototype blade.

키워드

참고문헌

  1. Colman Shattuck, Jon Young., 1993 "Modern Propeller Technology for Advanced Turboprop Aircraft", AIAA/SAE/ASME/ASEE 20th Joint Propulsion Conference and Exhibit.
  2. R.M. Bass and D.G.M. Davis, 1985, "A Review of Some Recent U.K. Propeller Developments", AIAA/SAE/ASME/ASEE 21st Joint Propulsion Conference.
  3. Rolland G. Dalgneault and Donald G. Hall, 1982, "Advanced Propeller Technology for New Commuter Aircraft", Commuter Aircraft and Airline Operations Meeting.
  4. W. Choi, 2012. 12, "The Study of Advanced Propeller Blade for Next Generation Turboprop Aircraft ; Part I. Aerodynamic Design and Analysis ", Journal of KSAS, Vol. 40, No. 12, pp.1017-1024. https://doi.org/10.5139/JKSAS.2012.40.12.1017
  5. Y. G. Kim, K. C. Kim., 2007. 5, "FSI analysis on wind turbine blade", Proceeding of the 2011 KSME Spring Conference, pp.2368-2371.
  6. C. D. Kong, H. B. Park, G. S. Lee, W. Choi., 2011. 4, "A Study on Conceptual Structural Design for Composite Propeller Balde of Turboprop", Proceeding of the 2011 KSAS Spring Conference.
  7. C. D. Kong., 2005, "Structural investigation of composite wind turbine blade considering various cases and fatigue life", ENERGY, Vol. 30, pp. 2101-2114. https://doi.org/10.1016/j.energy.2004.08.016
  8. R. McCarthy, "Manufacture of Composite Propeller Blades for Commuter Aircraft", 1985, General Aviation Aircraft Meeting and Exposition.
  9. C. D. Kong, H. B. Park, K. J. Kang, "Structural Design and Analysis for Carbon/Epoxy Composite Wing of A Small Scale WIG Vehicle", Journal of The Korean Society for Composite Materials, Vol. 19, pp. 12-19.
  10. MSC. Software, 2000, "MSC. Patran 2000(r2) Reference Manual".

피인용 문헌

  1. Development of Strength Test System for Structure under Large Uniform Surface Load vol.108, 2017, https://doi.org/10.1051/matecconf/201710807005