• Title/Summary/Keyword: Flux function

Search Result 537, Processing Time 0.028 seconds

Development of Heating Technology for Greenhouse by Use of Ground Filtration Water Source Heat Pump (여과수열원 히트펌프를 이용한 온실난방기술 개발)

  • Moon, J.P.;Lee, S.H.;Kang, Y.K.;Lee, S.J.;Kim, K.W.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.172.2-172.2
    • /
    • 2010
  • This study was carried out in order to reduce the installation expense of heating system for greenhouse comparing to geothermal heat pump and develope the coefficient of performance (COP) for a heat pump. For getting plenty of heat flux from geothermal energy. Surface water in river channel was used for getting a lots of geothermal heat by penetrating water through underground soil layer of the river bank that make heat transmission to passing water. The range of water temperature after the process of Ground filtration is 13~18 degrees celsius which is very similar to low heat source of geothermal heat pump system and the plenty amount of heat source from that make the number of geothermal heat exchanging hole and the expense for geothermal heat exchanger construction reduced. Drainage well is also used for returning filtration water to the aquifer that keep the water good recirculation from losing geothermal heat and water resource. For the COP improvement of Heat pump, thermal storage tank with separating insulation plate according to the temperature difference make the COP of Heat pump that is similar to thermal storage tank with diffuser. Developed thermal storage tank make construction expense cheaper than customarily used one's. and that sand filter and oxidation sand (FELOX) are going to be used for improving ground filtration water quality that make heat exchanger efficiency better. All above developed component skill are going to be set on the Ground filtration water source heat pump system and applied for medium, large scale for protected greenhouse in riverside area and on-site experiment is going to do for optimizing the heating system function and overcome the problem happening in the process of on-site application afterward.

  • PDF

Highly Luminescent (Zn0.6Sr0.3Mg0.1)2Ga2S5:Eu2+ Green Phosphors for a White Light-Emitting Diode

  • Jeong, Yong-Kwang;Cho, Dong-Hee;Kim, Kwang-Bok;Kang, Jun-Gill
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2523-2528
    • /
    • 2012
  • Green phosphors $(Zn_{1-a-b}M_aM^{\prime}_b)_xGa_yS_{x+3y/2}:Eu^{2+}$ (M, M' = alkali earth ions) with x = 2 and y = 2-5 were prepared, starting from ZnO, MgO, $SrCO_3$, $Ga_2O_3$, $Eu_2O_3$, and S with a flux $NH_4F$ using a conventional solidstate reaction. A phosphor with the composition of $(Zn_{0.6}Sr_{0.3}Mg_{0.1})_2Ga_2S_5:Eu^{2+}$ produced the strongest luminescence at a 460-nm excitation. The observed XRD patterns indicated that the optimized phosphor consisted of two components: zinc thiogallate and zinc sulfide. The characteristic green luminescence of the $ZnS:Eu^{2+}$ component on excitation at 460 nm was attributed to the donor-acceptor ($D_{ZnGa_2S_4}-A_{ZnS}$) recombination in the hybrid boundary. The optimized green phosphor converted 17.9% of the absorbed blue light into luminescence. For the fabrication of light-emitting diode (LED), the optimized phosphor was coated with MgO using magnesium nitrate to overcome their weakness against moisture. The MgO-coated green phosphor was fabricated with a blue GaN LED, and the chromaticity index of the phosphor-cast LED (pc-LED) was investigated as a function of the wt % of the optimized phosphor. White LEDs were fabricated by pasting the optimized green (G) and the red (R) phosphors, and the commercial yellow (Y) phosphor on the blue chips. The three-band pc-WLED resulted in improved color rendering index (CRI) and corrected color temperature (CCT), compared with those of the two-band pc-WLED.

Efficient Shadow-Test Algorithm for the Simulation of Dry Etching and Topographical Evolution (건식 식각 공정 시뮬레이션을 위한 효율적인 그림자 테스트 알고리즘과 토포그래피 진화에 대한 연구)

  • Kwon, Oh-Seop;Ban, Yong-Chan;Won, Tae-Young
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.2
    • /
    • pp.41-47
    • /
    • 1999
  • In this paper, we report 3D-simulations of a plasma etching process by employing cell-removal algorithm takes into account the mask shadow effect os well as spillover errors. The developed simulator haas an input interface to take not only an analytic form but a Monte Carlo distribution of the ions. The graphic user interface(GUI) was also built into the simulator for UNIX environment. To demonstrate the capability of 3D-SURFILER(SURface proFILER), we have simulated for a typical contact hole structure with 36,000($30{\times}40{\times}30$) cells, which takes about 20 minutes with 10 Mbytes memory on sun ultra sparc 1. as an exemplary case, we calculated the etch profile during the reactive ion etching(RIE) of a contact hole wherein the aspect ratio is 1.57. Furthermore, we also simulated the dependence of a damage parameter and the evolution of topography as a function of the chamber pressure and the incident ion flux.

  • PDF

Transient Analysis of General Dispersive Media Using Laguerre Functions (라게르 함수를 이용한 일반적인 분산 매질의 시간 영역 해석)

  • Lee, Chang-Hwa;Kwon, Woo-Hyen;Jung, Baek-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.10
    • /
    • pp.1005-1011
    • /
    • 2011
  • In this paper, we present a marching-on-in-degree(MOD) finite difference method(FDM) based on the Helmholtz wave equation for analyzing transient electromagnetic responses in a general dispersive media. The two issues related to the finite difference approximation of the time derivatives and the time consuming convolution operations are handled analytically using the properties of the Laguerre functions. The basic idea here is that we fit the transient nature of the fields, the flux densities, the permittivity with a finite sum of orthogonal Laguerre functions. Through this novel approach, not only the time variable can be decoupled analytically from the temporal variations but also the final computational form of the equations is transformed from finite difference time-domain(FDTD) to a finite difference formulation through a Galerkin testing. Representative numerical examples are presented for transient wave propagation in general Debye, Drude, and Lorentz dispersive medium.

Model-Based Analysis of the $ZrO_2$ Etching Mechanism in Inductively Coupled $BCl_3$/Ar and $BCl_3/CHF_3$/Ar Plasmas

  • Kim, Man-Su;Min, Nam-Ki;Yun, Sun-Jin;Lee, Hyun-Woo;Efremov, Alexander M.;Kwon, Kwang-Ho
    • ETRI Journal
    • /
    • v.30 no.3
    • /
    • pp.383-393
    • /
    • 2008
  • The etching mechanism of $ZrO_2$ thin films and etch selectivity over some materials in both $BCl_3$/Ar and $BCl_3/CHF_3$/Ar plasmas are investigated using a combination of experimental and modeling methods. To obtain the data on plasma composition and fluxes of active species, global (0-dimensional) plasma models are developed with Langmuir probe diagnostics data. In $BCl_3$/Ar plasma, changes in gas mixing ratio result in non-linear changes of both densities and fluxes for Cl, $BCl_2$, and ${BCl_2}^+$. In this work, it is shown that the non-monotonic behavior of the $ZrO_2$ etch rate as a function of the $BCl_3$/Ar mixing ratio could be related to the ion-assisted etch mechanism and the ion-flux-limited etch regime. The addition of up to 33% $CHF_3$ to the $BCl_3$-rich $BCl_3$Ar plasma does not influence the $ZrO_2$ etch rate, but it non-monotonically changes the etch rates of both Si and $SiO_2$. The last effect can probably be associated with the corresponding behavior of the F atom density.

  • PDF

Application of Lumley's Drag Reduction Model to Two-Phase Gas-Particl Flow in a Pipe(II) - Mechanism of Heat Transfer- (고체 분말이 부상하는 2상 난류 수직관 유동에 대한 Lumley의 저항감소 모델의 적용 (II) - 열전달 기구 -)

  • 한기수;정명균;성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.214-224
    • /
    • 1990
  • A "two-fluid" model using thermal eddy diffusivity concept and Lumley's drag reduction theory, is proposed to analyze heat transfer of the turbulent dilute gas-particle flow in a vertical pipe with constant wall heat flux. The thermal eddy diffusivity is derived to be a function of the ratio of the heat capacity-density products .rho. over bar $C_{p}$ of the gaseous phase and the particulate phase and also of the ratio of thermal relaxation time scale to that of turbulence. The Lumley's theory dictates the variation of the viscous sublayer thickness depending on the particle loading ratio Z and the relative particle size $d_{p}$/D. At low loading ratio, the size of viscous sublayer thickness is important for suspension heat transfer, while at higher loading, the effect of the ratio .rho. $_{p}$ over bar $C_{p}$$_{p}$/ .rho. $_{f}$ over bar $C_{p}$$_{f}$ is dominant. The major cause of decrease in the suspension Nusselt number at lower loading ratio is found to be due to the increase of the viscous sublayer thickness caused by the suppression of turbulence near the wall by the presence of solid particles. Predicted Nusselt numbers using the present model are in satisfactory agreements with available experimental data both in pipe entrance and the fully developed regions.

The Construction Work Completion of the Fuel Test Loop (핵연료 노내조사시험설비 설치공사 완료)

  • Park, Kook-Nam;Lee, Chung-Young;Chi, Dae-Young;Park, Su-Ki;Shim, Bong-Sik;Ahn, Sung-Ho;Kim, Hark-Rho;Lee, Jong-Min
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.291-295
    • /
    • 2007
  • FTL(Fuel Test Loop) is a facility that confirms performance of nuclear fuel at a similar irradiation condition with that of nuclear power plant. FTL consists of In-Pile Test Section (IPS) and Out-Pile System (OPS). FTL construction work began on August, 2006 and ended on March, 2007. During Construction, ensuring the worker's safety was the top priority and installation of the FTL without hampering the integrity of the HANARO was the next one. Task Force Team was organized to do a construction systematically and the communication between members of the task force team was done through the CoP(community of Practice) notice board provided by the Institute. The installation works were done successfully overcoming the difficulties such as on the limited space, on the radiation hazard inside the reactor pool, and finally on the shortening of the shut down period of the HANARO. Without a sweet of the workers of the participating company of HEC(Hyundae Engineering Co, Ltd), HDEC(HyunDai Engineering & Construction Co. Ltd), equipment manufacturer, and the task force team, it is not possible to install the FTL facility within the planned shutdown period. The Commissioning of the FTL is on due to check the function and the performance of the equipment and the overall system as well. The FTL shall start operation with high burn up test fuels in early 2008 if the commissioning and licensing progress on schedule.

  • PDF

Estimation of Fugitive Dust Emission and Impact Assessment in Constructing the New Port by Reclamation of Sea Sand (신항만 해사 매립 공사시 비산먼지 발생량 산정 및 주변영향평가)

  • Choi, Won-Joon;Cho, Ki-Chul;Lee, Eun-Yong;Na, Ha-Young;Lee, Soon-Kyu;Oh, Kwang-Joong
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.4
    • /
    • pp.237-247
    • /
    • 2006
  • In case of studied area located around the sea, the data measured from the regional meteorological office is highly different from the local weather data because the diffusivity of fugitive dust varies considerably with meteorological conditions. Especially, it is very difficult to predict the amount of fugitive dust accurately as wind speed remains high frequently. In this study, the fluxes of suspended particulates as a function of the friction velocity were applied to consider the effect of wind speed on the amount of fugitive dust generated from the reclamation site. The amount of fugitive dust estimated as mentioned above was simulated by using ISCST3 model. As a result, in case of using only the Fugitive Dust Formula which is usually used in Environment Impact Assessment, the predicted $PM_{10}$ concentrations with points were $43.4{\sim}67.8{\mu}g/m^3$. However, in case of applying to the flux of suspended particulates, the predicted values of $PM_{10}$ with points were $43.3{\sim}69.1{\mu}g/m^3$, $49.5{\sim}90.4{\mu}g/m^3$ and $76.0{\sim}182.6{\mu}g/m^3$ with the wind speeds of 4.4, 5.8 and 7.7m/s, respectively. It could be possible to predict the amount of fugitive dust accurately because these predicted values were similar to the measured values. Consequently, we can establish alternatives for reduction of fugitive dust in this area damaged by fugitive dust which is caused by wind.

Thermal Design of MGSE Panel for Thermal Vacuum Test of Ka-band Engineering Qualification Model Payload of Communications and Broadcasting Satellite (통신방송위성 Ka-대역 기술인증모델 탑재체의 열진공시험을 위한 MGSE 패널 열설계)

  • Kim, Jeong Hun;Choe, Seong Bong;Yang, Gun Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.96-102
    • /
    • 2003
  • The thermal design of MGSE(Mechanical Ground Support Equipment) panel is performed for thermal vacum thest of Ka-band EQM(Engineering Qualification Model) payload of communications and broadcasting satellite. The thermal environments are predicted to evaluate the performance of transponder equipments in the thermal vacum chamber. SINDA is used to verify the thermal design of the heat pipe layout. Embedded 16 heat pipes in the EQM payload developed for Ka-band trasponder equipments are designded properly. The heat fluz loaded on the external facesheet is 265W/㎡ for the hot platear function test of the traspinder equipments, and the zero heat flux for the cold plateau case. The maxium predicted heat transport capability is 2723 W-cm.

Prediction Model of the Outer Radiation Belt Developed by Chungbuk National University

  • Shin, Dae-Kyu;Lee, Dae-Young;Kim, Jin-Hee;Cho, Jung-Hee
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.303-309
    • /
    • 2014
  • The Earth's outer radiation belt often suffers from drastic changes in the electron fluxes. Since the electrons can be a potential threat to satellites, efforts have long been made to model and predict electron flux variations. In this paper, we describe a prediction model for the outer belt electrons that we have recently developed at Chungbuk National University. The model is based on a one-dimensional radial diffusion equation with observationally determined specifications of a few major ingredients in the following way. First, the boundary condition of the outer edge of the outer belt is specified by empirical functions that we determine using the THEMIS satellite observations of energetic electrons near the boundary. Second, the plasmapause locations are specified by empirical functions that we determine using the electron density data of THEMIS. Third, the model incorporates the local acceleration effect by chorus waves into the one-dimensional radial diffusion equation. We determine this chorus acceleration effect by first obtaining an empirical formula of chorus intensity as a function of drift shell parameter $L^*$, incorporating it as a source term in the one-dimensional diffusion equation, and lastly calibrating the term to best agree with observations of a certain interval. We present a comparison of the model run results with and without the chorus acceleration effect, demonstrating that the chorus effect has been incorporated into the model to a reasonable degree.