DOI QR코드

DOI QR Code

Highly Luminescent (Zn0.6Sr0.3Mg0.1)2Ga2S5:Eu2+ Green Phosphors for a White Light-Emitting Diode

  • Received : 2011.09.09
  • Accepted : 2012.05.01
  • Published : 2012.08.20

Abstract

Green phosphors $(Zn_{1-a-b}M_aM^{\prime}_b)_xGa_yS_{x+3y/2}:Eu^{2+}$ (M, M' = alkali earth ions) with x = 2 and y = 2-5 were prepared, starting from ZnO, MgO, $SrCO_3$, $Ga_2O_3$, $Eu_2O_3$, and S with a flux $NH_4F$ using a conventional solidstate reaction. A phosphor with the composition of $(Zn_{0.6}Sr_{0.3}Mg_{0.1})_2Ga_2S_5:Eu^{2+}$ produced the strongest luminescence at a 460-nm excitation. The observed XRD patterns indicated that the optimized phosphor consisted of two components: zinc thiogallate and zinc sulfide. The characteristic green luminescence of the $ZnS:Eu^{2+}$ component on excitation at 460 nm was attributed to the donor-acceptor ($D_{ZnGa_2S_4}-A_{ZnS}$) recombination in the hybrid boundary. The optimized green phosphor converted 17.9% of the absorbed blue light into luminescence. For the fabrication of light-emitting diode (LED), the optimized phosphor was coated with MgO using magnesium nitrate to overcome their weakness against moisture. The MgO-coated green phosphor was fabricated with a blue GaN LED, and the chromaticity index of the phosphor-cast LED (pc-LED) was investigated as a function of the wt % of the optimized phosphor. White LEDs were fabricated by pasting the optimized green (G) and the red (R) phosphors, and the commercial yellow (Y) phosphor on the blue chips. The three-band pc-WLED resulted in improved color rendering index (CRI) and corrected color temperature (CCT), compared with those of the two-band pc-WLED.

Keywords

References

  1. Kim, J. W.; Kim, Y. J. J. Nanosci. Nanotech. 2007, 7, 4065. https://doi.org/10.1166/jnn.2007.066
  2. Kim, W.; Kim, Y. J. J. Euro. Ceram. Soc. 2007, 27, 3667. https://doi.org/10.1016/j.jeurceramsoc.2007.02.054
  3. Wickleder, C.; Zhang, S.; Haeuseler, H. Z. Kristallographie 2005, 220, 277. https://doi.org/10.1524/zkri.220.2.277.59126
  4. Chartier, C.; Barthou, C.; Benalloul, P.; Frigerio, J. M. J. Lumin. 2005, 111, 147. https://doi.org/10.1016/j.jlumin.2004.07.006
  5. Smet, P. F.; Moreels, I.; Hens, Z.; Poelman, D. Mater. 2010, 3, 2834. https://doi.org/10.3390/ma3042834
  6. Huh, Y.-D.; Park, J.-Y.; Kweon, S.-S.; Kim, J.-H.; Kim, J.-G.; Do, Y. R. Bull. Korean Chem. Soc. 2004, 25, 1585. https://doi.org/10.5012/bkcs.2004.25.10.1585
  7. Nazarov, M.; Noh, D. Y.; Byeon, C. C.; Kim, H. J. Appl. Phys. 2009, 105, 073518. https://doi.org/10.1063/1.3093932
  8. Inaho, S.; Hase, T. Phosphor Handbook; Shionoya, S., Yen, W. M., Eds.; CRC Press: New York, 1999; Ch. 4.
  9. Jung, H. S.; Lee, J.-K.; Nastasi, M.; Lee, S.-W.; Kim, J.-Y.; Park, J.-S.; Hong, K. S. Langmuir 2005, 21, 10332. https://doi.org/10.1021/la051807d
  10. de Mello, J. C.; Wittmann, H. F.; Friend, R. H. Adv. Mater. 1997, 9, 230. https://doi.org/10.1002/adma.19970090308
  11. Kim, K.-B.; Kim, Y.-I.; Chun, H.-G.; Cho, T.-Y.; Jung, J.-S.; Kang, J.-G. Chem. Mater. 2002, 14, 5045. https://doi.org/10.1021/cm020592f
  12. Chen, W.; Malm, J.-O.; Zwiller, V.; Huang, Y.; Liu, S.; Wallenberg, R.; Bovin, J.-O. Phys. Rev. B 2000, 61, 11021. https://doi.org/10.1103/PhysRevB.61.11021
  13. Chen, W.; Malm, J.-O.; Zwiller, V.; Wallenberg, R.; Bovin, J.-O. J. Appl. Phys. 2001, 89, 2671. https://doi.org/10.1063/1.1344582
  14. Tang, T. P.; Wang, W. L.; Wang, S. F. J. Alloys Compd. 2009, 488, 250. https://doi.org/10.1016/j.jallcom.2009.08.098
  15. Li, G. H.; Su, F. H.; Ma, B. S.; Ding, K.; Xu, S. J.; Chen, W. Phys. Stat. Sol. (b) 2004, 241, 3248. https://doi.org/10.1002/pssb.200405215
  16. Park, S. H.; Park, J. K.; Kim, C. H.; Jang, H. G. Bull. Korean Chem. Soc. 2010, 31, 3075. https://doi.org/10.5012/bkcs.2010.31.11.3075
  17. Kang, J.-G.; Kim, M.-K.; Kim, K.-B. Mater. Res. Bull. 2008, 43, 1982. https://doi.org/10.1016/j.materresbull.2007.10.001
  18. Shin, J.-S.; Kim, H.-J.; Jeong, Y.-K.; Kim, K.-B.; Kang, J.-G. Mater. Chem. Phys. 2011, 126, 591. https://doi.org/10.1016/j.matchemphys.2011.01.016

Cited by

  1. Origin of saturated green emission from europium in zinc thiogallate vol.3, pp.9, 2013, https://doi.org/10.1364/OME.3.001338
  2. Energy level modeling of lanthanide materials: review and uncertainty analysis vol.17, pp.29, 2015, https://doi.org/10.1039/C5CP02156A
  3. Highly Luminescent Multicomponent Green Phosphor for a White Light-emitting Diode vol.36, pp.6, 2015, https://doi.org/10.1002/bkcs.10322