• Title/Summary/Keyword: Fluorescent sensing membrane

Search Result 8, Processing Time 0.02 seconds

Study on Online Monitoring of Dissolved Oxygen, pH and Cell Concentration in E. coli Cultivation Processes Using MABOOMSTM (마이크로플레이트 기반 생물반응기 시스템 (MABOOMSTM)을 이용한 대장균 배양공정에서 용존산소, pH 및 세포농도의 온라인 모니터링 연구)

  • Sohn, Ok-Jae;Rhee, Jong Il
    • KSBB Journal
    • /
    • v.28 no.1
    • /
    • pp.24-30
    • /
    • 2013
  • Dissolved oxygen, pH and cell concentration have been online monitored in cultivation processes with Escherichia coli by using a $MABOOMS^{TM}$ (microplate-based bioreactor with optical online monitoring systems). Fluorescent sensing membranes containing Ru ${(dpp)_3}^{2+}$ or HPTS were prepared with GA sol-gel matrix and coated into a well of a 24-well microplate. Fluorescence intensity was measured and correlated to the dissolved oxygen or pH. Cell concentrations were also online monitored by measuring optical reflectance at 650 nm. A well of a 24-well microplate could also be divided into 4 parts, each of which was coated with fluorescent sensing membranes for the detection of dissolved oxygen or pH. The 24-well microplate coated with fluorescent sensing membranes or a 4-divided sensing membrane. was used to online monitor the dissolved oxygen, pH and cell concentration during E. coli cultivations. The online monitoring results showed the characteristics of cell growth in cultivation processes very well.

Development of a Fluorescent Sensor Based on Resazurin and Hydrotalcite for the Determination of Ethanol in Alcoholic Beverages

  • Hong Dinh Duong;Juyeon Kim;Jong Il Rhee
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.70-77
    • /
    • 2024
  • In this study, a fluorescent ethanol sensor is developed to determine the ethanol concentration in the liquid phase. The sensor is developed using a complex of resazurin (RA)/resorufin (RO) and a hydrotalcite (HT) catalyst in a sol-gel matrix of methyltrimethoxysilane (MTMS) to produce a fluorescent ethanol-sensing membrane (RA/RO*HT membrane). The operation mechanism of the RA/RO*HT membrane is based on (i) the oxidation of ethanol to acetaldehyde and (ii) the reduction of RA to RO, through electron flows followed by EtOH ↔ HT ↔ RA/RO ↔ EtOH interactions. These possible redox reactions can lead to an increased fluorescence intensity of the RA/RO*HT membrane as the ethanol concentration increases. The RA/RO*HT membrane shows a linear detection range of 1-20 vol.% EtOH with limit of detection (LOD) of 0.178%. Additionally, the RA/RO*HT membrane has high sensitivity and accuracy for determining the alcohol content in several Korean alcoholic beverages.

Study on Cell Growth Characteristics with Culture Medium Components by Using MABOOMSTM (마이크로플레이트 기반 생물반응기 시스템(MABOOMSTM)을 이용한 발효배지 성분의 미생물 성장 특성 연구)

  • Sohn, Ok-Jae;Rhee, Jong Il
    • KSBB Journal
    • /
    • v.28 no.1
    • /
    • pp.31-35
    • /
    • 2013
  • In this work a $MABOOMS^{TM}$ has been employed to cultivate microorganisms and investigated the effects of culture medium components on cell growth. A 24-well microplate coated with 4-divided fluorescent sensing membranes was used to monitor the dissolved oxygen, pH and cell concentration during cultivations. Fluorescence intensity for dissolved oxygen or solution pH and reflectance for cell concentration was online monitored by using the $MABOOMS^{TM}$. The online monitoring results showed the effects of culture medium components on cell growth in cultivation processes very well.

Molecular System Design for the Acetylcholine Fluorescent Chemosensor

  • Kah, Kwang-Nak
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.508-513
    • /
    • 1997
  • We exploited a new molecular system - acetylcholine (neurotransmitter) detection system as a building block for the perfect molecular information system (sensing membrane of the chemical sensor) - using water soluble calix[n]arene-p-sulfonates which are useful even in aqueous (water/methanol) neutral solution. This achievement is due to several outstanding properties of these calix[n]arene derivatives such as low $pK_{a}$ values, cation-interactions, and high water-solubility, etc.

  • PDF

Characteristics and Fabrication of Dissolved Oxygen and pH Measurement System based on the Optical Sensor for Analysis of Cell Metabolic Functions (세포대사 기능 분석을 위한 광학센서 기반 용존산소와 pH 측정 시스템의 제작 및 특성 분석)

  • Jang, Jiwoon;Hwang, Insook;Lee, Jongmok;Lee, Sunmin;Kang, Sora;Kim Pak, Youngmi;Kim, Nayoung
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.51-56
    • /
    • 2016
  • This study evaluates the performance of an optical sensor and measurement system (CMA-24) which can analyze the fluctuation of dissolved oxygen and pH simultaneously. In the optical sensor system, the fluorescent materials, Rudpp and HPTS which are sensitive to dissolved oxygen and pH, respectively, are coated on the bottom of a 24-well -plate by the sol-gel technology. The detection times of the emission light of the oxygen sensor were $4,186{\pm}13.90{\mu}s$ and $4,452{\pm}36.68{\mu}s$ for the dissolved oxygen of 17% $O_2$ and 7.6% $O_2$, respectively. On the other hand, the detection times of the pH sensor were $6,699.43{\pm}14.64{\mu}s$, $6,722.24{\pm}6.21{\mu}s$, and $6,748.52{\pm}2.63{\mu}s$ using pH 6, 7, and 8, respectively. When we determined cellular respiration levels of C2C12 myocytes with CMA-24, $O_2$/pH measurement system, the ratio of the uncoupled to coupled OCR (oxygen consumption rate) was 1.41. The results mean that this CMA-24 system shows almost the same sensitiveness as the commercial system.

Determination of $Ca^{2+}$ by Fiber Optic Fluorosensor Based on the Conformational Change of the Protein Calmodulin (Calmodulin 단백질의 형태변화를 이용한 광섬유 형광센서에 의한 $Ca^{2+}$의 정량)

  • Ri, Chang-Seop;Yang, Seung Tae
    • Analytical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.221-227
    • /
    • 1995
  • The fiber optic fluorosensor that shows a specific selectivity for calcium ion is studied. This sensor employs protein Calmodulin(CaM) which forms a fluorescent chelate with $Ca^{2+}$. A dialysis membrane is used to entrap a fluorescein isothiocyanate-labeled CaM solution at the common end of a bifurcated fiber optic bundle. The sensing mechanism of this sensor is based on the shifts in the fluorescence spectrum of metal-calmodulin complexes which FCaM forms a chelate with $Ca^{2+}$. Upon binding with $Ca^{2+}$, CaM undergoes a conformational change which induces a change in the fluorescence of FCaM. This change in fluorescence signal which is measured by photomultiflier tube is related to the concentration of $Ca^{2+}$ for calibration curve. Detection limit for $Ca^{2+}$ and the interference effects by $Mg^{2+}$, $Eu^{3+}$ and $La^{3+}$ for this sensor are studied. Response time and life time for this fluorosensor are also investigated.

  • PDF

Development and Characterization of Optical Dissolved Oxygen Sensor based on the Fluorescence Detection (형광검출기반 광학식 용존산소 측정센서 개발 및 특성 분석)

  • Kwak, Hyun Min;Kwon, Myeunghoi;Choi, Gyewoon;Jung, Yoonseok;Jung, Changhwan;Park, Kiuha;Sohn, Okjae;Kim, Junhyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.1
    • /
    • pp.569-574
    • /
    • 2014
  • We developed and evaluated a fluorescence-based optical DO sensor (OS-100, Global Optical Communication Ltd., Korea) for long-term monitoring of the dissolved oxygen concentration in waste water treatment. Fluorescent sensing membrane containing $Ru(Dpp)_3{^{2+}}$ (tris(4,7diphenyl-1, 10-phenanthroline) ruthenium(II)) was prepared with GA sol-gel matrix and coated on a quartz plate by sprayed method. Properties of sensor film exhibit deviation about ${\pm}1%$ under wide range of DO concentration from 3 to 10. The developed optical DO sensor was actually mounted in waste water from dyeing industry and successfully applied for on-line DO monitoring. Online monitoring results showed the changes of DO concentrations in wastewater treatment processes with accuracy better than ${\pm}2%$ during the 6 months measurements period in vicious environmental conditions.

Analysis of Human Serum Amyloid A-1 Concentrations Using a Lateral Flow Immunoassay with CdSe/ZnS Quantum Dots (Human Serum Amyloid A-1 단백질 농도 분석을 위한 CdSe/ZnS 양자점 기반의 Lateral Flow Immunoassay 방법 개발)

  • Fajri, Aidil;Goh, Eunseo;Lee, Sanghyuk;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.429-434
    • /
    • 2019
  • A lateral flow immunoassay platform utilizing antibody functionalized water soluble CdSe/ZnS semiconductor quantum dots (QDs) was developed for the analysis of human serum amyloid A-1 (hSAA1) in a buffer solution. hSAA1 was chosen as a target protein because it is regarded as a potential biomarker associated with early diagnosis and prognosis in patients of lung cancer. The immunoassay strip on a nitrocellulose membrane was fabricated by spraying two lines composed of a test line with a monoclonal antibody against hSAA1 (10G1) (anti hSAA1) and a control line of anti-chicken IgY. While the CdSe/ZnS QDs synthesized in an organic phase were transferred to a water phase by ligand exchange using carboxylic acid modified alkane thiol. The QDs was then conjugated to monoclonal antibody against hSAA1 (14F8) [anti hSAA1 (14F8)] and used as a fluorescent detection probe. The sequential lateral flow of hSAA1 in different concentration and QDs-anti hSAA1 (14F8) complex allowed to form the surface sandwich complex of anti hSAA1 (10G1)/hSAA1/QD-anti hSAA1 (14F8), which was then analyzed using fluorescence microscope. A 100 nM concentration of hSAA1 protein can be detected by naked eyes under an optimized lateral flow buffer condition with a sensing time of 5 mins.