Browse > Article
http://dx.doi.org/10.14478/ace.2019.1044

Analysis of Human Serum Amyloid A-1 Concentrations Using a Lateral Flow Immunoassay with CdSe/ZnS Quantum Dots  

Fajri, Aidil (Department of Chemistry, Kyungpook National University)
Goh, Eunseo (Department of Chemistry, Kyungpook National University)
Lee, Sanghyuk (Department of Chemistry, Kyungpook National University)
Lee, Hye Jin (Department of Chemistry, Kyungpook National University)
Publication Information
Applied Chemistry for Engineering / v.30, no.4, 2019 , pp. 429-434 More about this Journal
Abstract
A lateral flow immunoassay platform utilizing antibody functionalized water soluble CdSe/ZnS semiconductor quantum dots (QDs) was developed for the analysis of human serum amyloid A-1 (hSAA1) in a buffer solution. hSAA1 was chosen as a target protein because it is regarded as a potential biomarker associated with early diagnosis and prognosis in patients of lung cancer. The immunoassay strip on a nitrocellulose membrane was fabricated by spraying two lines composed of a test line with a monoclonal antibody against hSAA1 (10G1) (anti hSAA1) and a control line of anti-chicken IgY. While the CdSe/ZnS QDs synthesized in an organic phase were transferred to a water phase by ligand exchange using carboxylic acid modified alkane thiol. The QDs was then conjugated to monoclonal antibody against hSAA1 (14F8) [anti hSAA1 (14F8)] and used as a fluorescent detection probe. The sequential lateral flow of hSAA1 in different concentration and QDs-anti hSAA1 (14F8) complex allowed to form the surface sandwich complex of anti hSAA1 (10G1)/hSAA1/QD-anti hSAA1 (14F8), which was then analyzed using fluorescence microscope. A 100 nM concentration of hSAA1 protein can be detected by naked eyes under an optimized lateral flow buffer condition with a sensing time of 5 mins.
Keywords
Lateral flow immunoassay; Human serum amyloid A-1; CdSe/ZnS semiconductor quantum dots; Lung cancer biomarker;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Brown, A. Zingone, Y. Yu, B. Zhu, J. Candia, L. Cao, and B. M. Ryan, Relationship between circulating inflammation proteins and lung cancer diagnosis in the national lung screening trial, Cancer Epidemiol. Biomarkers Prev., 28, 110-118 (2019).   DOI
2 L. A. Fashoyin-Aje, L. L. Fernandes, R. Sridhara, P. Keegan, and R. Pazdur, Demographic composition of lung cancer trials: FDA analysis, J. Clin. Oncol., 36, 9088 (2018).   DOI
3 S. H. Yang, Biomarkers for lung cancer, J. Lung Cancer, 8, 67-77 (2009).   DOI
4 S. K. Arya and S. Bhansali, Lung cancer and its early detection using biomarker-based biosensors, Chem. Rev., 111, 6783-6809 (2011).   DOI
5 M. Cremona, E. Calabro, G. Randi, M. De Bortoli, P. Mondellini, C. Verri, G. Sozzi, M. A. Pierotti, C. La Vecchia, U. Pastorino, and I. Bongarzone, Elevated levels of the acute-phase serum amyloid are associated with heightened lung cancer risk, Cancer, 116, 1326-1335 (2010).   DOI
6 J. Zhao, X. Li, X. Zhao, J. Wang, Q. Xi, and G. Hu, Study on the correlation of serum amyloid A level with overall survival and radiation pneumonitis in non-small cell lung cancer patients receiving thoracic radiotherapy, Precis. Rad. Oncol., 1, 46-51 (2017).   DOI
7 Z. N. Farwig, C. J. McNeal, D. Little, C. E. Baisden, and R. D. Macfarlane, Novel truncated isoforms of constitutive serum amyloid A detected by MALDI mass spectrometry, Biochem. Biophys. Res. Commun., 332, 352-356 (2005).   DOI
8 W. C. S. Cho, T. T. Yip, W. W. Cheng, and J. S. K. Au, Serum amyloid A is elevated in the serum of lung cancer patients with poor prognosis, Br. J. Cancer, 102, 1731 (2010).   DOI
9 E. S. Speranskaya, V. V. Goftman, and I. Y. Goryacheva, Preparation of water soluble zinc-blende CdSe/ZnS quantum dots, Nanotech. Russ., 8, 129-135 (2013).   DOI
10 S. J. Lim, B. Chon, T. Joo, and S. K. Shin, Synthesis and characterization of Zinc-blende CdSe-based core/shell nanocrystals and their luminescence in water, J. Phys. Chem. C, 112, 1744-1747 (2008).   DOI
11 P. Reiss, M. Protiere, and L. Li, Core/shell semiconductor nanocrystals, Small, 5, 154-168 (2009).   DOI
12 S. Mathew, B. S. Bhardwaj, A. D. Saran, P. Radhakrishnan, V. P. N. Nampoori, C. P. G. Vallabhan, and J. R. Bellare, Effect of ZnS shell on optical properties of CdSe-ZnS core-shell quantum dots, Opt. Mater., 39, 46-51 (2015).   DOI
13 N. Vo, H. Ngo, D. Vu, A. Duong, and Q. Lam, Conjugation of E. coli O157 : H7 antibody to CdSe/ZnS quantum dots, J. Nanomater., 2015, 8 (2015).
14 T. C. Tisone and B. O'Farrell, Manufacturing the next generation of highly sensitive and reproducible lateral flow immunoassay. In: R. Wongand H. Tse (eds.). Lateral Flow Immunoassay, 1-26, Springer, New York, USA (2009).
15 S. Low, R. Shaimi, Y. Thandaithabany, J. Lim, A. Ahmad, and A. Ismail, Electrophoretic interactions between nitrocellulose membranes and proteins: Biointerface analysis and protein adhesion properties, Colloids Surf. B, 110, 248-253 (2013).   DOI
16 S. Choi, J. Hwang, S. Lee, D. W. Lim, H. Joo, and J. Choo, Quantitative analysis of thyroid-stimulating hormone (TSH) using SERS-based lateral flow immunoassay, Sens. Actuators B, 240, 358-364 (2017).   DOI
17 H.-J. Sung, S.-S. Na, K.-J. Seul, H.-S. Jeon, J. Y. Park, and J.-Y. Cho, Clinically applicable diagnostics assay development for lung cancer biomarker, SAA, J. Proteom. Bioinform., 07, 303-309 (2014).
18 T.-L. Wu, I. C. Tsai, P.-Y. Chang, K.-C. Tsao, C.-F. Sun, L. L. Wu, and J. T. Wu, Establishment of an in-house ELISA and the reference range for serum amyloid A (SAA): Complementarity between SAA and C-reactive protein as markers of inflammation, Clin. Chim. Acta, 376, 72-76 (2007).   DOI
19 J. Tolson, R. Bogumil, E. Brunst, H. Beck, R. Elsner, A. Humeny, H. Kratzin, M. Deeg, M. Kuczyk, G. A. Mueller, C. A. Mueller, and T. Flad, Serum protein profiling by SELDI mass spectrometry: Detection of multiple variants of serum amyloid alpha in renal cancer patients, Lab. Invest., 84, 845 (2004).   DOI
20 B. P. C. Hazenberg, P. C. Limburg, J. Bijzet, and M. H. Van Rijswijk, Monoclonal antibody based ELISA for human SAA. In: J. B. Natvig, O. Forre, G. Husby, A. Husebekk, B. Skogen, K. Slettenand P. Westermark (eds.). Amyloid and Amyloidosis 1990: VIth International Symposium on Amyloidosis August 5-8, 1990, Oslo, Norway, 898-901, Springer Netherlands, Dordrecht, Netherlands (1991).
21 E. Fu, T. Liang, J. Houghtaling, S. Ramachandran, S. A. Ramsey, B. Lutz, and P. Yager, Enhanced sensitivity of lateral flow tests using a two-dimensional paper network format, Anal. Chem., 83, 7941-7946 (2011).   DOI
22 F. Oberpenning, S. Hetzel, C. Weining, B. Brandt, G. De Angelis, A. Heinecke, M. Lein, P. Fornara, H.-P. Schmid, L. Hertle, and A. Semjonow, Semi-quantitative immunochromatographic test for prostate specific antigen in whole blood: Tossing the coin to predict prostate cancer?, Eur. Urol., 43, 478-484 (2003).   DOI
23 J. A. A. Ho and R. D. Wauchope, A strip liposome immunoassay for aflatoxin B1, Anal. Chem., 74, 1493-1496 (2002).   DOI
24 P. L. A. M. Corstjens, L. van Lieshout, M. Zuiderwijk, D. Kornelis, H. J. Tanke, A. M. Deelder, and G. J. van Dam, Up-converting phosphor technology-based lateral flow assay for detection of schistosoma circulating anodic antigen in serum, J. Clin. Microbiol., 46, 171-176 (2008).   DOI
25 H. Qu, Y. Zhang, B. Qu, H. Kong, G. Qin, S. Liu, J. Cheng, Q. Wang, and Y. Zhao, Rapid lateral-flow immunoassay for the quantum dot-based detection of puerarin, Biosens. Bioelectron., 81, 358-362 (2016).   DOI
26 Q. Yang, X. Gong, T. Song, J. Yang, S. Zhu, Y. Li, Y. Cui, Y. Li, B. Zhang, and J. Chang, Quantum dot-based immunochromatography test strip for rapid, quantitative and sensitive detection of alpha fetoprotein, Biosens. Bioelectron., 30, 145-150 (2011).   DOI
27 X. Deng, C. Wang, Y. Gao, J. Li, W. Wen, X. Zhang, and S. Wang, Applying strand displacement amplification to quantum dots-based fluorescent lateral flow assay strips for HIV-DNA detection, Biosens. Bioelectron., 105, 211-217 (2018).   DOI
28 F. Di Nardo, E. Alladio, C. Baggiani, S. Cavalera, C. Giovannoli, G. Spano, and L. Anfossi, Colour-encoded lateral flow immunoassay for the simultaneous detection of aflatoxin B1 and type-B fumonisins in a single test line, Talanta, 192, 288-294 (2019).   DOI
29 J.-J. Wang, B.-H. Liu, Y.-T. Hsu, and F.-Y. Yu, Sensitive competitive direct enzyme-linked immunosorbent assay and gold nanoparticle immunochromatographic strip for detecting aflatoxin M1 in milk, Food Control, 22, 964-969 (2011).   DOI
30 S. Joshi, A. Segarra-Fas, J. Peters, H. Zuilhof, T. A. van Beek, and M. W. F. Nielen, Multiplex surface plasmon resonance biosensing and its transferability towards imaging nanoplasmonics for detection of mycotoxins in barley, Analyst, 141, 1307-1318 (2016).   DOI
31 J. Bogdanovic, M. Koets, I. Sander, I. Wouters, T. Meijster, D. Heederik, A. van Amerongen, and G. Doekes, Rapid detection of fungal ${\alpha}$-amylase in the work environment with a lateral flow immunoassay, J. Allergy Clin. Immunol., 118, 1157-1163 (2006).   DOI
32 D. Serrate, J. M. De Teresa, C. Marquina, J. Marzo, D. Saurel, F. A. Cardoso, S. Cardoso, P. P. Freitas, and M. R. Ibarra, Quantitative biomolecular sensing station based on magnetoresistive patterned arrays, Biosens. Bioelectron., 35, 206-212 (2012).   DOI
33 N. V. Beloglazova, E. S. Speranskaya, A. Wu, Z. Wang, M. Sanders, V. V. Goftman, D. Zhang, I. Y. Goryacheva, and S. De Saeger, Novel multiplex fluorescent immunoassays based on quantum dot nanolabels for mycotoxins determination, Biosens. Bioelectron., 62, 59-65 (2014).   DOI
34 B. Liu, L. Wang, B. Tong, Y. Zhang, W. Sheng, M. Pan, and S. Wang, Development and comparison of immunochromatographic strips with three nanomaterial labels: Colloidal gold, nanogold- polyaniline-nanogold microspheres (GPGs) and colloidal carbon for visual detection of salbutamol, Biosens. Bioelectron., 85, 337-342 (2016).   DOI
35 C. Chen and J. Wu, A fast and sensitive quantitative lateral flow immunoassay for cry1ab based on a novel signal amplification conjugate, Sensors, 12, 11684 (2012).   DOI
36 F. Wu, H. Yuan, C. Zhou, M. Mao, Q. Liu, H. Shen, Y. Cen, Z. Qin, L. Ma, and L. Song Li, Multiplexed detection of influenza A virus subtype H5 and H9 via quantum dot-based immunoassay, Biosens. Bioelectron., 77, 464-470 (2016).   DOI
37 F. Ma, C. Li, and C. Zhang, Development of quantum dot-based biosensors: Principles and applications, J. Mater. Chem. B, 6, 6173-6190 (2018).   DOI
38 H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sundar, F. V. Mikulec, and M. G. Bawendi, Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein, J. Am. Chem. Soc., 122, 12142-12150 (2000).   DOI
39 M. Danek, K. F. Jensen, C. B. Murray, and M. G. Bawendi, Synthesis of luminescent thin-film CdSe/ZnSe quantum dot composites using CdSe quantum dots passivated with an overlayer of ZnSe, Chem. Mater., 8, 173-180 (1996).   DOI
40 M. A. Hines and P. Guyot-Sionnest, Synthesis and characterization of strongly luminescing ZnS-Capped CdSe nanocrystals, J. Phys. Chem., 100, 468-471 (1996).   DOI