DOI QR코드

DOI QR Code

Development of a Fluorescent Sensor Based on Resazurin and Hydrotalcite for the Determination of Ethanol in Alcoholic Beverages

  • Hong Dinh Duong (School of Chemical Engineering, Chonnam National University) ;
  • Juyeon Kim (School of Chemical Engineering, Chonnam National University) ;
  • Jong Il Rhee (School of Chemical Engineering, Chonnam National University)
  • Received : 2023.12.15
  • Accepted : 2024.01.23
  • Published : 2024.03.31

Abstract

In this study, a fluorescent ethanol sensor is developed to determine the ethanol concentration in the liquid phase. The sensor is developed using a complex of resazurin (RA)/resorufin (RO) and a hydrotalcite (HT) catalyst in a sol-gel matrix of methyltrimethoxysilane (MTMS) to produce a fluorescent ethanol-sensing membrane (RA/RO*HT membrane). The operation mechanism of the RA/RO*HT membrane is based on (i) the oxidation of ethanol to acetaldehyde and (ii) the reduction of RA to RO, through electron flows followed by EtOH ↔ HT ↔ RA/RO ↔ EtOH interactions. These possible redox reactions can lead to an increased fluorescence intensity of the RA/RO*HT membrane as the ethanol concentration increases. The RA/RO*HT membrane shows a linear detection range of 1-20 vol.% EtOH with limit of detection (LOD) of 0.178%. Additionally, the RA/RO*HT membrane has high sensitivity and accuracy for determining the alcohol content in several Korean alcoholic beverages.

Keywords

Acknowledgement

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (NRF2019R1I1A3A01057222).

References

  1. A. Charishma, V. Jayarama, V. D. Shastrimath, and R. Pinto, "An ethanol sensor review: materials, techniques and performance", SAHYADRI Intern. J. Res., Vol. 3, No. 1, pp. 37-46, 2017.
  2. Z. Wang, Z. Tian, D. Han, and F. Gu, "Highly sensitive and selective ethanol sensor fabricated with indoped 3DOM ZnO", ACS Appl. Mater. Interf., Vol. 8, No. 8, pp. 5466-5474, 2016.
  3. B. Huang, Y. Wang, Q. Hu, X. Mu, Y. Zhang, J. Bai, Q. Wang, Y. Sheng, Z. Zhang, and E. Xie, "A low temperature and highly sensitive ethanol sensor based on Au modified In2O3 nanofibers by coaxial electrospinning", J. Mater. Chem. C, Vol. 6, No. 40, pp. 10935-10943, 2018.
  4. P. S. Kuchi, H. Roshan, and M. H. Sheikhi, "A novel room temperature ethanol sensor based on PbS:SnS2 nanocomposite with enhanced ethanol sensing properties", J. Alloys. Compd., Vol. 816, p. 152666, 2020.
  5. T. Yarita, R. Nakajima, S. Otsuka, T. Ihara, A. Takatsu, and M. Shibukawa, "Determination of ethanol in alcoholic beverages by high performance liquid chromatography-flame ionization detection using pure water as mobile phase", J. Chromatogr. A, Vol. 976, No. 1-2, pp. 387-391, 2002. https://doi.org/10.1016/S0021-9673(02)00942-1
  6. E. Mataix and M. D. L. De Castro, "Simultaneous determination of ethanol and glycerol in wines by a flow injection-pervaporation approach with in parallel photometric and fluorimetric detection", Talanta, Vol. 51, No. 3, pp. 489-496, 2000. https://doi.org/10.1016/S0039-9140(99)00297-0
  7. T. J. Buckley, J. D. Pleil, J. R. Bowyer, and J. M. Davis, "Evaluation of methyl ter-butyl ether (MTBE) as an interference on commercial breath-alcohol analyzers", Foren. Sci. Int., Vol. 123, No. 2-3, pp. 111-118, 2001. https://doi.org/10.1016/S0379-0738(01)00534-5
  8. K. Mitsubayashi, T. Kon, and Y. Hashimoto, "Optical bio-sniffer for ethanol vapor using an oxygen-sensitive optical fiber", Biosens. Bioelectron., Vol. 19, No. 3, pp.193-198, 2003. https://doi.org/10.1016/S0956-5663(03)00218-5
  9. D. N. Simon, R. Czolk, and H. J. Ache, "Doped sol-gel films for the development of optochemical ethanol sensors", Thin Solid Films, Vol. 260, No. 1, pp. 107-110, 1995. https://doi.org/10.1016/0040-6090(94)06483-0
  10. N. G. Patel, S. Meier, K. Cammann, and G.-C. Chemnitius, "Screen-printed biosensors using different alcohol oxidases", Sens. Actuators B, Vol. 75, No. 1-2, pp. 101-110, 2001. https://doi.org/10.1016/S0925-4005(01)00545-7
  11. M. M. Barsan and C. M. A. Brett, "An alcohol oxidase biosensor using PNR redox mediator at carbon film electrodes", Talanta, Vol. 74, No. 5, pp. 1505-1510, 2008.
  12. A. M. Azevedo, D. M. F. Prazeres, J. M. S. Cabral, and L. P. Fonseca, "Ethanol biosensors based on alcohol oxidase", Biosens. Bioelectron., Vol. 21, No. 2, pp. 235-247, 2005. https://doi.org/10.1016/j.bios.2004.09.030
  13. J. I. Rhee and K. Schugerl, "The influence of metabolites on enzyme based injection analysis", Anal. Chim. Acta, Vol. 355, No. 1, pp. 55-62, 1997. https://doi.org/10.1016/S0003-2670(97)81611-X
  14. A. M. Azevedo, J. M. S. Cabral, D. M. F. Prazeres, T. D. Gibson, and L. P. Fonseca, "Thermal and operational stabilities of Hansenula polymorpha alcohol oxidase", J. Mol. Catal. B Enzym., Vol. 27, No. 1, pp. 37-45, 2004. https://doi.org/10.1016/j.molcatb.2003.09.001
  15. Y. V. Rodionov, O. I. Keppen, and M. V. Sukhacheva, "A photometric assay for ethanol", Appl. Biochem. Microbiol., Vol. 38, pp. 395-396, 2002. https://doi.org/10.1023/A:1016203710316
  16. K. Takahashi, M. Tajima, K. Matsunaga, and H. Miura, "Fluorescence of rhodamine 6G on hydrotalcite - possibility of alcohol sensing", Chem. Lett., Vol. 38, No. 2, pp. 158-159, 2009. https://doi.org/10.1246/cl.2009.158
  17. C. Bueno, M. L. Villegas, S. G. Bertolotti, C. M. Previtali, M. G. Neumann, and M. V. Encinas, "The excited-state interaction of resazurin and resorufin with amines in aqueous solutions. Photophysics and photochemical reaction", Photochem. Photobiol., Vol. 76, No. 4, pp. 385-390, 2002. https://doi.org/10.1562/0031-8655(2002)0760385TESIOR2.0.CO2
  18. L. Flamigni, E. Venuti, N. Camaioni, and F. Barigelletti, "A spectroscopic investigation of the temperature and solvent sensitivities of resorufin", J. Chem. Soc., Faraday Trans., Vol. 85, No. 12, pp. 1935-1943, 1989.
  19. G. J. Blanchard and C. A. Cihal, "Orientational relaxation dynamics of oxazine 118 and resorufin in the butanols: Valence- and state-dependent solvation effects", J. Phys. Chem., Vol. 92, No. 21, pp. 5950-5954, 1988.
  20. L. Martin, J. O. Osso, S. Ricart, A. Roig, O. Garcia, and R. Sastre, "Organo-modified silica aerogels and implications for material hydrophobicity and mechanical properties", J. Mater. Chem., Vol. 18, No. 2, pp. 207-213, 2008. https://doi.org/10.1039/B712553D
  21. H. D. Duong and J. I. Rhee, "Preparation and characterization of sensing membranes for the detection of glucose, lactate and tyramine in microtiter plates", Talanta, Vol. 72, No. 4, pp. 1275-1282, 2007.
  22. M. M. Rahman, A. Jamal, S. B. Khan, and M. Faisal, "Highly sensitive ethanol chemical sensor based on Ni-doped SnO2 nanostructure materials", Biosens. Bioelectron., Vol. 28, No. 1, pp. 127-134, 2011. https://doi.org/10.1016/j.bios.2011.07.024
  23. X. Hu, H. Cao, W. Dong, and J. Tang, "Ratiometric fluorescent sensing of ethanol based on copper nanoclusters with tunable dual emission", Talanta, Vol. 233, p. 122480, 2021.
  24. N. L. T. Nguyen, S. H. Baek, Z. A. Akbar, S. Y. Jang, S. Ha, J. P. Park, and T. J. Park, "Rapid determination of ethyl alcohol in alcoholic beverages using a fluorescent nanofiber film", BioChip J., Vol. 12, pp. 240-248, 2018. https://doi.org/10.1007/s13206-017-2305-6