DOI QR코드

DOI QR Code

Development and Characterization of Optical Dissolved Oxygen Sensor based on the Fluorescence Detection

형광검출기반 광학식 용존산소 측정센서 개발 및 특성 분석

  • Received : 2013.12.17
  • Accepted : 2014.01.09
  • Published : 2014.01.31

Abstract

We developed and evaluated a fluorescence-based optical DO sensor (OS-100, Global Optical Communication Ltd., Korea) for long-term monitoring of the dissolved oxygen concentration in waste water treatment. Fluorescent sensing membrane containing $Ru(Dpp)_3{^{2+}}$ (tris(4,7diphenyl-1, 10-phenanthroline) ruthenium(II)) was prepared with GA sol-gel matrix and coated on a quartz plate by sprayed method. Properties of sensor film exhibit deviation about ${\pm}1%$ under wide range of DO concentration from 3 to 10. The developed optical DO sensor was actually mounted in waste water from dyeing industry and successfully applied for on-line DO monitoring. Online monitoring results showed the changes of DO concentrations in wastewater treatment processes with accuracy better than ${\pm}2%$ during the 6 months measurements period in vicious environmental conditions.

오폐수 처리에 있어서 용존산소량을 장기간, 연속측정이 가능한 DO 센서의 개발이 요구되어, 형광검출 특성을 이용한 광학식 DO 센서를 개발하고 특성을 분석하였다 (OS-100, 글로벌광통신주식회사). 형광 센서막은 GA를 이용하여 졸-겔 방법을 이용하여 $Ru(Dpp)_3{^{2+}}$(tris(4,7diphenyl-1, 10-phenanthroline) ruthenium(II)) 형광물질을 제작하였고, 용액과 혼합하여 스프레이 방법으로 석영기판위에 증착하였다. 증착된 형광막은 용존산소 농도 3 mg/L에서 10 mg/L 사이의 넓은 영역에서 ${\pm}1%$ 이하의 오차를 보였다. 제작된 광학식 DO 센서의 성능평가를 위하여 대구염색단지의 오폐수처리장 폐수의 실시간 용존산소를 장기간 측정하였다. 6개월간의 장기간에 걸쳐 실시간 측정된 용존산소의 결과는 염색공단 폐수의 악조건 하에서도 ${\pm}2%$ 이하의 오차를 나타내었다.

Keywords

References

  1. Sohn O.J. (2009), Microplate-based bioreactor equipped with an optical online monitoring system, 2009. Ph.D Thesis, Chonnam National University.
  2. Samantha M.G., Lukas C., Karen C.C. (2010), Optical oxygen sensors for applications in microfluidic cell culture, 2010. Sensors, pp.9286-9316.
  3. Stephen B., Frank D. (2012). A comparison of amperometric and optical dissolved oxygen sensors in power and industrial water applications at low oxygen levels. http://www.hach.com/asset-get.download.jsa?id=7639984815.html.
  4. Bergman I. (1968), Rapid-response atmospheric oxygen monitor based on fluorescence quenching, 1968. Nature, pp.396. DOI: http://dx.doi.org/10.1038/218396a0
  5. 5. Wilson D.F., Vinogradov S.A. (2003). Tissue oxygen measurements using phosphorescence quenching. In Handbook of Biomedical Fluorescence; Mycek, M.A., Pogue, B.W. Eds.; Marcel Dekker: NewYork, NY, USA, 2003, pp.637-662.
  6. Stitt D.T., Nagar M.S., Haq T.A., Timmins M.R. (2002), Determination of growth rate of microorganism in broth from oxygen-sensitive fluorescence plate reader measurements, 2002. Bio-Techniques, pp.684-689.
  7. Kim S.Y., Kim C.K., Sohn O.J., Rhee J.I. (2009), Monitoring of pH and dissolved oxygen in microorganism fermentation processes using 24-well microplate. KSBB Journal, pp.207-211.
  8. William R.C. (2005), Temperature and solventdependent luminescent properties of tris (2,2-bipyridyl) ruthenium(II) chloride, Senior honors thesis, Eastern Michigan University