• 제목/요약/키워드: FlipMin

검색결과 110건 처리시간 0.019초

High Speed Pulse-based Flip-Flop with Pseudo MUX-type Scan for Standard Cell Library

  • Kim, Min-Su;Han, Sang-Shin;Chae, Kyoung-Kuk;Kim, Chung-Hee;Jung, Gun-Ok;Kim, Kwang-Il;Park, Jin-Young;Shin, Young-Min;Park, Sung-Bae;Jun, Young-Hyun;Kong, Bai-Sun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제6권2호
    • /
    • pp.74-78
    • /
    • 2006
  • This paper presents a high-speed pulse-based flip-flop with pseudo MUX-type scan compatible with the conventional master-slave flip-flop with MUX-type scan. The proposed flip-flop was implemented as the standard cell library using Samsung 130nm HS technology. The data-to-output delay and power-delay-product of the proposed flip-flop are reduced by up to 59% and 49%, respectively. By using this flop-flop, ARM11 softcore has achieved the maximum 1GHz operating speed.

전기도금법을 이용하여 형성한 Au-Sn 플립칩 접속부의 미세구조 및 접속저항 (Microstructure and Contact Resistance of the Au-Sn Flip-Chip Joints Processed by Electrodeposition)

  • 김성규;오태성
    • 마이크로전자및패키징학회지
    • /
    • 제15권4호
    • /
    • pp.9-15
    • /
    • 2008
  • Au와 Sn을 순차적으로 도금한 Au/Sn 범프를 플립칩 본딩하여 Au-Sn 솔더 접속부를 형성 후, 미세구조와 접속저항을 분석하였다. $285^{\circ}C$에서 30초간 플립칩 본딩한 Au-Sn 솔더 접속부는 $Au_5Sn$+AuSn lamellar 구조로 이루어져 있으며, 이 시편을 $310^{\circ}C$에서 3분간 유지하여 2차 리플로우시 $Au_5Sn$+AuSn interlamellar spacing이 증가하였다. $285^{\circ}C$에서 30초간 플립칩 본딩한 Au-Sn 접속부는 15.6 $m{\Omega}$/bump의 평균 접속저항을 나타내었으며, 이 시편을 다시 $310^{\circ}C$에서 3분간 유지하여 2차 리플로우 한 Au-Sn 접속부는 15.0 $m{\Omega}$/bump의 평균 접속저항을 나타내었다.

  • PDF

인터널 노드 변환을 최소화시킨 저전력 플립플롭 회로 (Low Power Flip-Flop Circuit with a Minimization of Internal Node Transition)

  • 최형규;윤수연;김수연;송민규
    • 반도체공학회 논문지
    • /
    • 제1권1호
    • /
    • pp.14-22
    • /
    • 2023
  • 본 논문에서는 dual change-sensing 기법을 사용하여 내부 노드 변환을 최소화시킨 저전력 플립플롭 회로를 제안한다. 제안하는 Dual Change-Sensing Flip-Flop(DCSFF)은 데이터 변환이 존재하지 않는 경우, 기존에 존재하던 플립플롭들 중 동적 전력 소모가 가장 낮다. 65nm CMOS 공정을 사용한 측정 결과에 따르면, conventional Transmission Gate Flip-Flop(TGFF)와 비교하여 data activity 가 0% 와 100% 일때, 각각 98%와 32%의 감소된 전력 소모를 보였다. 또한 Change-Sensing Flip-lop(CSFF)과 비교하여 제안하는 DCSFF 는 30% 의 낮은 전력 소모를 보였다.

Bit Flip Reduction Schemes to Improve PCM Lifetime: A Survey

  • Han, Miseon;Han, Youngsun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제5권5호
    • /
    • pp.337-345
    • /
    • 2016
  • Recently, as the number of cores in computer systems has increased, the need for larger memory capacity has also increased. Unfortunately, dynamic random access memory (DRAM), popularly used as main memory for decades, now faces a scalability limitation. Phase change memory (PCM) is considered one of the strong alternatives to DRAM due to its advantages, such as high scalability, non-volatility, low idle power, and so on. However, since PCM suffers from short write endurance, direct use of PCM in main memory incurs a significant problem due to its short lifetime. To solve the lifetime limitation, many studies have focused on reducing the number of bit flips per write request. In this paper, we describe the PCM operating principles in detail and explore various bit flip reduction schemes. Also, we compare their performance in terms of bit reduction rate and lifetime improvement.

All-optical Flip-flop Operation Based on Polarization Bistability of Conventional-type 1.55-㎛ Wavelength Single-mode VCSELs

  • Lee, Seoung-Hun;Jung, Hae-Won;Kim, Kyong-Hon;Lee, Min-Hee
    • Journal of the Optical Society of Korea
    • /
    • 제14권2호
    • /
    • pp.137-141
    • /
    • 2010
  • We report, for the first time to our knowledge, observation of polarization bistability from 1.55-${\mu}m$ wavelength single-mode VCSELs of a conventional cylinder-shape under control of their driving current, and demonstration of all-optical flip-flop (AOFF) operations based on the bistability with optical set and reset pulse injection at a 50 MHz switching frequency. The injection pulse energy was less than 14 fJ. The average on-off contrast ratio of the flip-flopped signals was about 7 dB. These properties of the VCSELs will be potentially useful for future high-speed all-optical signal processing applications.

Flip-Flop of Phospholipids in DMPC/POPC Mixed Vesicles

  • Kim, Min Ki;Kim, Chul
    • 대한화학회지
    • /
    • 제64권3호
    • /
    • pp.145-152
    • /
    • 2020
  • Flip-flop rate constants were measured by dithionite assay of NBD-PE fluorescence in DMPC/POPC vesicles made of various DMPC/POPC ratios. The activation energy, enthalpy, entropy, and free energy were determined based on the transition state theory. We found that the activation energy, enthalpy, and entropy increased as the amount of POPC increased, but the activation free energy was almost constant. These experimental results and other similar studies allow us to propose that the POPC molecules included in DMPC vesicles affect the flip-flop motion of NBD-PE in DMPC/POPC vesicles via increasing the packing order of the ground state of the bilayer of the vesicles. The increase in the packing order in the ground state seems to be a result of the effect of the overall molecular shape of POPC with a monounsaturated tail group, rather than the effect of the longer tail group.

플립칩 본딩용 접착제 특성에 미치는 촉매제의 영향 (Effects of Catalysts on the Adhesive Properties for Flip Chip Bonding)

  • 민경은;이준식;유세훈;김목순;김준기
    • 한국재료학회지
    • /
    • 제20권12호
    • /
    • pp.681-685
    • /
    • 2010
  • The application of flip chip technology has been growing with the trend of miniaturization of electronic packages, especially in mobile electronics. Currently, several types of adhesive are used for flip chip bonding and these adhesives require some special properties; they must be solvent-free and fast curing and must ensure joint reliability against thermal fatigue and humidity. In this study, imidazole and its derivatives were added as curing catalysts to epoxy resin and their effects on the adhesive properties were investigated. Non-isothermal DSC analyses showed that the curing temperatures and the heat of reaction were dependent primarily on the type of catalyst. Isothermal dielectric analyses showed that the curing time was dependent on the amount of catalysts added as well as their type. The die shear strength increased with the increase of catalyst content while the Tg decreased. From this study, imidazole catalysts with low molecular weight are expected to be beneficial for snap curing and high adhesion strength for flip chip bonding applications.

IP-R&D를 통한 자동차분야 LED사업전략에 관한 연구 : Flip-Chip을 채용한 CSP (Chip-Scale Packaging) 기술을 중심으로 (A Study on Automotive LED Business Strategy Based on IP-R&D : Focused on Flip-Chip CSP (Chip-Scale Packaging))

  • 류창한;최용규;서민석
    • 반도체디스플레이기술학회지
    • /
    • 제14권3호
    • /
    • pp.13-22
    • /
    • 2015
  • LED (Light Emitting Diode) lighting is gaining more and more market penetration as one of the global warming countermeasures. LED is the next generation of fusion source composed of epi/chip/packaging of semiconductor process technology and optical/information/communication technology. LED has been applied to the existing industry areas, for example, automobiles, TVs, smartphones, laptops, refrigerators and street lamps. Therefore, LED makers have been striving to achieve the leading position in the global competition through development of core source technologies even before the promotion and adoption of LED technology as the next generation growth engine with eco-friendly characteristics. However, there has been a point of view on the cost compared to conventional lighting as a large obstacle to market penetration of LED. Therefore, companies are developing a Chip-Scale Packaging (CSP) LED technology to improve performance and reduce manufacturing costs. In this study, we perform patent analysis associated with Flip-Chip CSP LED and flow chart for promising technology forecasting. Based on our analysis, we select key patents and key patent players to derive the business strategy for the business success of Flip-Chip CSP PKG LED products.

X선 영상의 에지 추출을 통한 플립칩 솔더범프의 접합 형상 오차 검출 (Detection of Flip-chip Bonding Error Through Edge Size Extraction of X-ray Image)

  • 송춘삼;조성만;김준현;김주현;김민영;김종형
    • 제어로봇시스템학회논문지
    • /
    • 제15권9호
    • /
    • pp.916-921
    • /
    • 2009
  • The technology to inspect and measure an inner structure of micro parts has become an important tool in the semi-conductor industrial field with the development of automation and precision manufacturing. Especially, the inspection skill on the inside of highly integrated electronic device becomes a key role in detecting defects of a completely assembled product. X-ray inspection technology has been focused as a main method to inspect the inside structure. However, there has been insufficient research done on the customized inspection technology for the flip-chip assembly due to the interior connecting part of flip chip which connects the die and PCB electrically through balls positioned on the die. In this study, therefore, it is implemented to detect shape error of flip chip bonding without damaging chips using an x-ray inspection system. At this time, it is able to monitor the solder bump shape by introducing an edge-extracting algorithm (exponential approximation function) according to the attenuating characteristic and detect shape error compared with CAD data. Additionally, the bonding error of solder bumps is automatically detectable by acquiring numerical size information at the extracted solder bump edges.

플립칩 패키지된 40Gb/s InP HBT 전치증폭기 (A Flip Chip Packaged 40 Gb/s InP HBT Transimpedance Amplifier)

  • 주철원;이종민;김성일;민병규;이경호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.183-184
    • /
    • 2007
  • A 40 Gb/s transimpedance amplifier IC was designed and fabricated with a InP/InGaAs HBTs technology. In this study, we interconnect 40Gbps trans impedance amplifier IC to a duroid substrate by a flip chip bonding instead of conventional wire bonding for interconnection. For flip chip bonding, we developed fine pitch bump with the $70{\mu}m$ diameter and $150{\mu}m$ pitch using WLP process. To study the effect of WLP, electrical performance was measured and analyzed in wafer and package module using WLP. The Small signal gains in wafer and package module were 7.24 dB and 6.93dB respectively. The difference of small signal gain in wafer and package module was 0.3dB. This small difference of gain is due to the short interconnection length by bump. The characteristics of return loss was under -10dB in both wafer and module. So, WLP process can be used for millimeter wave GaAs MMIC with the fine pitch pad and duroid substrate can be used in flip chip bonding process.

  • PDF