Browse > Article
http://dx.doi.org/10.5012/jkcs.2020.64.3.145

Flip-Flop of Phospholipids in DMPC/POPC Mixed Vesicles  

Kim, Min Ki (Department of Chemistry, Hannam University)
Kim, Chul (Department of Chemistry, Hannam University)
Publication Information
Abstract
Flip-flop rate constants were measured by dithionite assay of NBD-PE fluorescence in DMPC/POPC vesicles made of various DMPC/POPC ratios. The activation energy, enthalpy, entropy, and free energy were determined based on the transition state theory. We found that the activation energy, enthalpy, and entropy increased as the amount of POPC increased, but the activation free energy was almost constant. These experimental results and other similar studies allow us to propose that the POPC molecules included in DMPC vesicles affect the flip-flop motion of NBD-PE in DMPC/POPC vesicles via increasing the packing order of the ground state of the bilayer of the vesicles. The increase in the packing order in the ground state seems to be a result of the effect of the overall molecular shape of POPC with a monounsaturated tail group, rather than the effect of the longer tail group.
Keywords
Flip-flop; DMPC/POPC vesicle; Fluorescence;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Siontorou, C. G.; Nikoleli, G.-P.; Nikolelis, D. P.; Karapetis, S. K. Membranes 2017, 7, 38.   DOI
2 Strandberg, E.; Tiltak, D.; Ehni, S.; Wadhwani, P.; Ulrich, A. S. Biochim. Biophys. Acta, Biomembr. 2012, 1818, 1764.   DOI
3 Allhusen, J. S.; Conboy, J. C. Acc. Chem. Res. 2017, 50, 58.   DOI
4 Kampf, J. P.; Cupp, D.; Kleinfeld, A. M. J. Biol. Chem. 2006, 281, 21566.   DOI
5 LeBarron, J.; London, E. Biochim. Biophys. Acta, Biomembr. 2016, 1858, 1812.   DOI
6 Anglin, T. C.; Cooper, M. P.; Li, H.; Chandler, K.; Conboy, J. C. J. Phys. Chem. B 2010, 114, 1903.   DOI
7 Sanderson, J. M., Mol. Membr. Biol. 2012, 29, 118.   DOI
8 Anglin, T. C.; Conboy, J. C. Biochemistry 2009, 48, 10220.   DOI
9 Gurtovenko, A. A.; Vattulainen, I. J. Phys. Chem. B 2007, 111, 13554.   DOI
10 Gurtovenko, A. A.; Onike, O. I.; Anwar, J. Langmuir 2008, 24, 9656.   DOI
11 Bennett, W. F. D.; Tieleman, D. P. Acc. Chem. Res. 2014, 47, 2244.   DOI
12 Barile, C. J.; Tse, E. C. M.; Li, Y.; Gewargis, J. P.; Kirchschlager, N. A.; Zimmerman, S. C.; Gewirth, A. A. Biophys. J. 2016, 110, 2451.   DOI
13 Ogushi, F.; Ishitsuka, R.; Kobayashi, T.; Sugita, Y. Chem. Phys. Lett. 2012, 522, 96.   DOI
14 Homan, R.; Pownall, H. J. Biochim. Biophys. Acta, Biomembr. 1988, 938, 155.   DOI
15 Armstrong, V. T.; Brzustowicz, M. R.; Wassall, S. R.; Jenski, L. J.; Stillwell, W. Arch. Biochem. Biophys. 2003, 414, 74.   DOI
16 Marquardt, D.; Heberle, F. A.; Miti, T.; Eicher, B.; London, E.; Katsaras, J.; Pabst, G. Langmuir 2017, 33, 3731.   DOI
17 Nakano, M.; Fukuda, M.; Kudo, T.; Endo, H.; Handa, T. Phys. Rev. Lett. 2007, 98, 238101.   DOI
18 Sapay, N.; Bennett, W. F. D.; Tieleman, D. P. Soft Matter 2009, 5, 3295.   DOI
19 John, K.; Schreiber, S.; Kubelt, J.; Herrmann, A.; Muller, P. Biophys. J. 2002, 83, 3315.   DOI
20 Bennett, W. F. D.; Sapay, N.; Tieleman, D. P. Biophys. J. 2014, 106, 210.   DOI