• Title/Summary/Keyword: Flip-Chip Bonding

Search Result 147, Processing Time 0.037 seconds

Analysis of thermal characteristic variations in LD arrays packaged by flip-chip solder-bump bonding technique (플립 칩 본딩으로 패키징한 레이저 다이오우드 어레이의 열적 특성 변화 분석)

  • 서종화;정종민;지윤규
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.3
    • /
    • pp.140-151
    • /
    • 1996
  • In this paper, we analyze the variations of thermal characteristics of LD (laser diode) arrays packaged by a flip-chip bonding method. When we simulate the temperature distribution in LD arrays with a BEM (boundary element method) program coded in this paper, we find that thermal crosstalks in LD arrays packaged by the flip-chip bonding method increases by 250-340% compared to that in LD arrays packaged by previous methods. In the LD array module packaged by the flip-chip bonding technique without TEC (thermo-electric cooler), the important parameter is the absolute temperature of the active layer increased due cooler), the important parameter is the absolute temperature of th eactiv elayers of LD arrays to thermal crosstalk. And we find that the temperature of the active layers of LD arrays increases up to 125$^{\circ}C$ whenall four LDs, without a carefully designed heatsink, are turned on, assuming the power consumption of 100mW from each LD. In order to reduce thermal crosstalk we propose a heatsink sturcture which can decrease the temeprature at the active layer by 40%.

  • PDF

Study of micro flip-chip process using ABL bumps (ABL 범프를 이용한 마이크로 플립 칩 공정 연구)

  • Ma, Junsung;Kim, Sungdong;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.2
    • /
    • pp.37-41
    • /
    • 2014
  • One of the important developments in next generation electronic devices is the technology for power delivery and heat dissipation. In this study, the Cu-to-Cu flip chip bonding process was evaluated using the square ABL power bumps and circular I/O bumps. The difference in bump height after Cu electroplating followed by CMP process was about $0.3{\sim}0.5{\mu}m$ and the bump height after Cu electroplating only was about $1.1{\sim}1.4{\mu}m$. Also, the height of ABL bumps was higher than I/O bumps. The degree of Cu bump planarization and Cu bump height uniformity within a die affected significantly on the misalignment and bonding quality of Cu-to-Cu flip chip bonding process. To utilize Cu-to-Cu flip chip bonding with ABL bumps, both bump planarization and within-die bump height control are required.

Chip on Glass Interconnection using Lateral Thermosonic Bonding Technology (횡방향 열초음파 본딩 기법을 이용한 COG 접합)

  • Ha, Chang-Wan;Yun, Won-Soo;Park, Keum-Saeng;Kim, Kyung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.7
    • /
    • pp.7-12
    • /
    • 2010
  • In this paper, chip-on-glass(COG) interconnection with anisotropic conductive film(ACF) using lateral thermosonic bonding technology is considered. In general, thermo-compression bonding which is used in practice for flip-chip bonding suffers from the low productivity due to the long bonding time. It will be shown that the bonding time can be improved by using lateral thermosonic bonding in which lateral ultrasonic vibration together with thermo-compression is utilized. By measuring the internal temperature of ACF, the fast curing of ACF thanks to lateral ultrasonic vibration will be verified. Moreover, to prove the reliability of the lateral thermosonic bonding, observation of pressured mark by conductive particles, shear test, and water absorption test will be conducted.

Fabrication of Porous Cu Layers on Cu Pillars through Formation of Brass Layers and Selective Zn Etching, and Cu-to-Cu Flip-chip Bonding (황동층의 형성과 선택적 아연 에칭을 통한 구리 필라 상 다공성 구리층의 제조와 구리-구리 플립칩 접합)

  • Wan-Geun Lee;Kwang-Seong Choi;Yong-Sung Eom;Jong-Hyun Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.98-104
    • /
    • 2023
  • The feasibility of an efficient process proposed for Cu-Cu flip-chip bonding was evaluated by forming a porous Cu layer on Cu pillar and conducting thermo-compression sinter-bonding after the infiltration of a reducing agent. The porous Cu layers on Cu pillars were manufactured through a three-step process of Zn plating-heat treatment-Zn selective etching. The average thickness of the formed porous Cu layer was approximately 2.3 ㎛. The flip-chip bonding was accomplished after infiltrating reducing solvent into porous Cu layer and pre-heating, and the layers were finally conducted into sintered joints through thermo-compression. With reduction behavior of Cu oxides and suppression of additional oxidation by the solvent, the porous Cu layer densified to thickness of approximately 1.1 ㎛ during the thermo-compression, and the Cu-Cu flip-chip bonding was eventually completed. As a result, a shear strength of approximately 11.2 MPa could be achieved after the bonding for 5 min under a pressure of 10 MPa at 300 ℃ in air. Because that was a result of partial bonding by only about 50% of the pillars, it was anticipated that a shear strength of 20 MPa or more could easily be obtained if all the pillars were induced to bond through process optimization.

Critical Cleaning Requirements for Flip Chip Packages

  • Bixenman, Mike;Miller, Erik
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.04a
    • /
    • pp.43-55
    • /
    • 2000
  • In traditional electronic packages the die and the substrate are interconnected with fine wire. Wire bonding technology is limited to bond pads around the peripheral of the die. As the demand for I/O increases, there will be limitations with wire bonding technology. Flip chip technology eliminates the need for wire bonding by redistributing the bond pads over the entire surface of the die. Instead of wires, the die is attached to the substrate utilizing a direct solder connection. Although several steps and processes are eliminated when utilizing flip chip technology, there are several new problems that must be overcome. The main issue is the mismatch in the coefficient of thermal expansion (CTE) of the silicon die and the substrate. This mismatch will cause premature solder Joint failure. This issue can be compensated for by the use of an underfill material between the die and the substrate. Underfill helps to extend the working life of the device by providing environmental protection and structural integrity. Flux residues may interfere with the flow of underfill encapsulants causing gross solder voids and premature failure of the solder connection. Furthermore, flux residues may chemically react with the underfill polymer causing a change in its mechanical and thermal properties. As flip chip packages decrease in size, cleaning becomes more challenging. While package size continues to decrease, the total number of 1/0 continue to increase. As the I/O increases, the array density of the package increases and as the array density increases, the pitch decreases. If the pitch is decreasing, the standoff is also decreasing. This paper will present the keys to successful flip chip cleaning processes. Process parameters such as time, temperature, solvency, and impingement energy required for successful cleaning will be addressed. Flip chip packages will be cleaned and subjected to JEDEC level 3 testing, followed by accelerated stress testing. The devices will then be analyzed using acoustic microscopy and the results and conclusions reported.

  • PDF

Chip Interconnection Process for Smart Fabrics Using Flip-chip Bonding of SnBi Solder (SnBi 저온솔더의 플립칩 본딩을 이용한 스마트 의류용 칩 접속공정)

  • Choi, J.Y.;Park, D.H.;Oh, T.S.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.3
    • /
    • pp.71-76
    • /
    • 2012
  • A chip interconnection technology for smart fabrics was investigated by using flip-chip bonding of SnBi low-temperature solder. A fabric substrate with a Cu leadframe could be successfully fabricated with transferring a Cu leadframe from a carrier film to a fabric by hot-pressing at $130^{\circ}C$. A chip specimen with SnBi solder bumps was formed by screen printing of SnBi solder paste and was connected to the Cu leadframe of the fabric substrate by flip-chip bonding at $180^{\circ}C$ for 60 sec. The average contact resistance of the SnBi flip-chip joint of the smart fabric was measured as $9m{\Omega}$.

Influence of Flip Chip Bonding Conditions Using Anisotropic Conductive Adhesive(ACA) in the Fabrication of RFID Tag (RFID tag의 제작 공정에서 비등방 전도성 접착제를 사용한 flip chip bonding 조건의 영향)

  • Lee, Jun-Sik;Kim, Jeong-Han;Kim, Mok-Sun;Lee, Jong-Hyeon
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.223-226
    • /
    • 2007
  • 본 연구에서는 Ag anisotropic conductive adhesive(ACA)의 종류, 경화 조건 및 안테나 패턴의 재질에 따른 flip chip bonding된 RFID die의 접합부 신뢰성이 조사되었다. 접합강도 측정에 의하여 접합강도가 최적화되는 공정 시간을 결정할 수 있었으며, 그러한 최적의 공정조건에서는 paste-type Ag ink로 인쇄된 안테나 상에서의 RFID die의 접합강도가 Cu 재질 안테나에 비해 상대적으로 높게 측정됨을 알 수 있었다. RFID tag의 인식거리 측정 시험을 통하여 적절한 경화 조건이 적용된다면 안테나의 재질이 인식거리 변화에 가장 주요한 영향을 미치는 인자임을 알 수 있었다. 아울러 Cu 안테나 패턴은 RFID die의 접합 과정에서 곡률을 가지며 휘어지면서 인식거리와 관련된 long-tem reliability를 악화시킬 수 있음을 관찰할 수 있었다.

  • PDF

Evaluation Method for Snap Cure Behavior of Non-conductive Paste for Flip Chip Bonding (플립칩 본딩용 비전도성 접착제의 속경화거동 평가기법)

  • Min, Kyung-Eun;Lee, Jun-Sik;Lee, So-Jeong;Yi, Sung;Kim, Jun-Ki
    • Journal of Welding and Joining
    • /
    • v.33 no.5
    • /
    • pp.41-46
    • /
    • 2015
  • The snap cure NCP(non-conducive paste) adhesive material is essentially required for the high productivity flip chip bonding process. In this study, the accessibility of DEA(dielectric analysis) method for the evaluation of snap cure behavior was investigated with comparison to the isothermal DSC(differential scanning calorimetry) method. NCP adhesive was mainly formulated with epoxy resin and imidazole curing agent. Even though there were some noise in the dielectric loss factor curve measured by DEA, the cure start and completion points could be specified clearly through the data processing of cumulation and deviation method. Degree of cure by DEA method which was measured from the variation of the dielectric loss factor of adhesive material was corresponded to about 80% of the degree of cure by DSC method which was measured from the heat of curing reaction. Because the adhesive joint cured to the degree of 80% in the view point of chemical reaction reveals the sufficient mechanical strength, DEA method is expected to be used effectively in the estimation of the high speed curing behavior of snap cure type NCP adhesive material for flip chip bonding.

A Flip Chip Packaged 40 Gb/s InP HBT Transimpedance Amplifier (플립칩 패키지된 40Gb/s InP HBT 전치증폭기)

  • Ju, Chul-Won;Lee, Jong-Min;Kim, Seong-Il;Min, Byoung-Gue;Lee, Kyung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.183-184
    • /
    • 2007
  • A 40 Gb/s transimpedance amplifier IC was designed and fabricated with a InP/InGaAs HBTs technology. In this study, we interconnect 40Gbps trans impedance amplifier IC to a duroid substrate by a flip chip bonding instead of conventional wire bonding for interconnection. For flip chip bonding, we developed fine pitch bump with the $70{\mu}m$ diameter and $150{\mu}m$ pitch using WLP process. To study the effect of WLP, electrical performance was measured and analyzed in wafer and package module using WLP. The Small signal gains in wafer and package module were 7.24 dB and 6.93dB respectively. The difference of small signal gain in wafer and package module was 0.3dB. This small difference of gain is due to the short interconnection length by bump. The characteristics of return loss was under -10dB in both wafer and module. So, WLP process can be used for millimeter wave GaAs MMIC with the fine pitch pad and duroid substrate can be used in flip chip bonding process.

  • PDF

Warpage Characteristics of Bottom Packages for Package-on-Package(PoP) with Different Chip Mounting Processes (칩 실장공정에 따른 Package on Package(PoP)용 하부 패키지의 Warpage 특성)

  • Jung, D.M.;Kim, M.Y.;Oh, T.S.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.3
    • /
    • pp.63-69
    • /
    • 2013
  • The warpage of a bottom package of Package on Package(PoP) where a chip was mounted to a substrate by flip chip process was compared to that of a bottom package for which a chip was bonded to a substrate using die attach film(DAF). At the solder reflow temperature of $260^{\circ}C$, the packages processed with flip chip bonding and DAF bonding exhibited warpages of $57{\mu}m$ and $-102{\mu}m$, respectively. At the temperature range between room temperature and $260^{\circ}C$, the packages processed with flip chip bonding and DAF bonding exhibited warpage values ranging from $-27{\mu}m$ to $60{\mu}m$ and from $-50{\mu}m$ to $-15{\mu}m$, respectively.