• Title/Summary/Keyword: Flexible matrix composite

Search Result 59, Processing Time 0.022 seconds

A Study on Structures and Properties of Liquid Crystal-UV Curable Resin Composite Materials (액정-UV경화 이크릴레이트 수지 복합재료의 구조와 물성에 관한 연구)

  • 김종원
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.18 no.1
    • /
    • pp.59-69
    • /
    • 2000
  • The characteristics of liquid crystal polymer composite(LCPC) films are possessed of large-area and flexible display, polarizer free, high contrast, wide angle of visual filed and high responsiveness. It is well known that the LCPC films consisting of a continuous LC phase embeded in a three-dimentional network of polymer matrix are formed by photopolymerization-induced phase separation. In this study, we have investigated the point that both liquid crystals and polymer having different properties have to coexiste as composed films. The purpose of this study has been the development of new application with liquid crystals and UV-curable monomers. In the results abtained on the miscibility of nematic liquid crystal and UV-curable resins, difunctional monomer HX-620 turned out to shows the best. From the results abtained on structures, electro-optical properties and dynamic visocoelasticity for LCPC films, the best mixing ratio of monomer to LC mixture were 3/7(photoinitiator; 4wt%) by weight, and this ratio has been provided the most thermal stability for LCPC films. In the results abtained on structure and discoloration properties of LCPC films, it has been demonstrated that consiste of a 8:2 mixture of chiral nematic liquid crystal and HX-620 has the greatest domain and it was the best discoloration.

  • PDF

Management of dental erosion induced by gastro-esophageal reflux disorder with direct composite veneering aided by a flexible splint matrix

  • Chockattu, Sherin Jose;Deepak, Byathnal Suryakant;Sood, Anubhav;Niranjan, Nandini T.;Jayasheel, Arun;Goud, Mallikarjun K.
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.1
    • /
    • pp.13.1-13.7
    • /
    • 2018
  • Dental erosion is frequently overlooked in clinical practice. The management of erosion-induced damage to the dentition is often delayed, such that extensive occlusal rehabilitation is required. These cases can be diagnosed by a careful clinical examination and a thorough review of the patient's medical history and/or lifestyle habits. This case report presents the diagnosis, categorization, and management of a case of gastro-esophageal reflux disease-induced palatal erosion of the maxillary teeth. The early management of such cases is of utmost importance to delay or prevent the progression of damage both to the dentition and to occlusal stability. Non-invasive adhesively bonded restorations aid in achieving this goal.

Piezoelectric and Acoustic Properties of PZI-Polymer 1 -3-0 Type Composite (PZT-고분자 1-3-0형 복합압전체의 압전 및 음향특성)

  • 양윤석;유영준;최헌일;손무헌;사공건
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.317-320
    • /
    • 1999
  • In this study, the piezoelectric ceramics PZT powder was synthesized by Wet-Dry combination method. And the flexible 1-3-0 type composites were fabricated with piezoceramic PZT and Eccogel polymer matrix embedded 3rd phase. Dielectric constant of 1-3-0 type composites was lower than that of single phase PZT ceramics. Thickness mode coupling factor k/sub t/ which was comparable with single phase PZT ceramics and mechanical quality factor Qm were about 0.65 and 6, respectively. These composites are considered as a good candidates for broad-band type transducer applications. The acoustic impedance of 1-3-0 type composites was lower than that of single phase PZT ceramics. Therefore, these composites would be better used for hydrophone applications.

  • PDF

Pulse-echo Response of Piezoceramics PZT-Polymer 1-3-0 Type Composite (1-3-0형 복합압전체의 펄스-에코특성)

  • 양윤석;유영준;최헌일;손무헌;사공건
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.303-306
    • /
    • 1999
  • In this study, the piezoelectric ceramics PZT powder was synthesized by Wet-Dry combination method. The flexible 1-3-0 type composites were fabricated with piezoceramic PZT and Eccogel polymer matrix embedded 3rd phase. This paper represents the acoustic properties with various 3rd phase wt.%. The acoustic impedance of 1-3-0 type composites was lower than that of single phase PZT ceramics. The pulse-echo response of transducer fabricated with 1-3-0 type composites was better than solid PZT transducer.

  • PDF

1-D Photonic Crystals Based on Bragg Structure for Sensing and Drug Delivery Applications

  • Koh, Youngdae
    • Journal of Integrative Natural Science
    • /
    • v.4 no.1
    • /
    • pp.11-14
    • /
    • 2011
  • Free-standing multilayer distributed Bragg reflectors (DBR) porous silicon dielectric mirrors, prepared by electrochemical etching of crystalline silicon using square wave currents are treated with polymethylmethacrylate (PMMA) to produce flexible, stable composite materials in which the porous silicon matrix is covered with caffeine-impregnated PMMA. Optically encoded free-standing DBR PSi dielectric mirrors retain the optical reflectivity. Optical characteristics of free-standing DBR PSi dielectric mirrors are stable and robust for 24 hrs in a pH 12 aqueous buffer solution. The appearance of caffeine and change of DBR peak were simultaneously measured by UV-vis spectrometer and Ocean optics 2000 spectrometer, respectively.

Preparation of Carrageenan-based Antimicrobial Films Incorporated With Sulfur Nanoparticles

  • Saedi, Shahab;Shokri, Mastaneh;Rhim, Jong-Whan
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.26 no.3
    • /
    • pp.125-131
    • /
    • 2020
  • Carrageenan-based functional films were prepared by adding two different types of sulfur nanoparticles (SNP) synthesized from sodium thiosulfate (SNPSTS) and elemental sulfur (SNPES). The films were characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction spectroscopy (XRD), and thermal gravimetric analysis (TGA). Also, film properties such as UV-visible light transmittance, water contact angle (WCA), water vapor permeability (WVP), mechanical properties, and antibacterial activity were evaluated. SNPs were uniformly dispersed in the carrageenan matrix to form flexible films. The addition of SNP significantly increased the film properties such as water vapor barrier and surface hydrophobicity but did not affect the mechanical properties. The carrageenan/SNP composite film showed some antibacterial activity against foodborne pathogenic bacteria, L. monocytogenes and E. coli.

Development of Composite-film-based Flexible Energy Harvester using Lead-free BCTZ Piezoelectric Nanomaterials (비납계 (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 압전 나노소재를 이용한 복합체 필름 기반의 플렉서블 에너지 하베스터 개발)

  • Gwang Hyeon Kim;Hyeon Jun Park;Bitna Bae;Haksu Jang;Cheol Min Kim;Donghun Lee;Kwi-Il Park
    • Journal of Powder Materials
    • /
    • v.31 no.1
    • /
    • pp.16-22
    • /
    • 2024
  • Composite-based piezoelectric devices are extensively studied to develop sustainable power supply and self-powered devices owing to their excellent mechanical durability and output performance. In this study, we design a lead-free piezoelectric nanocomposite utilizing (Ba0.85 Ca0.15)(Ti0.9Zr0.1)O3 (BCTZ) nanomaterials for realizing highly flexible energy harvesters. To improve the output performance of the devices, we incorporate porous BCTZ nanowires (NWs) into the nanoparticle (NP)-based piezoelectric nanocomposite. BCTZ NPs and NWs are synthesized through the solid-state reaction and sol-gel-based electrospinning, respectively; subsequently, they are dispersed inside a polyimide matrix. The output performance of the energy harvesters is measured using an optimized measurement system during repetitive mechanical deformation by varying the composition of the NPs and NWs. A nanocomposite-based energy harvester with 4:1 weight ratio generates the maximum open-circuit voltage and short-circuit current of 0.83 V and 0.28 ㎂, respectively. In this study, self-powered devices are constructed with enhanced output performance by using piezoelectric energy harvesting for application in flexible and wearable devices.

EFFECT OF RESIN MATRIX ON DEGREE OF CONVERSION AND FRACTURE TOUGHNESS OF DENIAL COMPOSITES (기질레진의 조성에 따른 복합레진의 물리적 성질에 관한 연구)

  • Lee, Yun-Shin;Choi, Kyoung-Kyu;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.1
    • /
    • pp.77-86
    • /
    • 2002
  • Current composites are made with dimethacrylate monomers and silane-treated silica microfillers, either alone or with silane treated glass fillers The main reasons for clinical failure of dental composites are secondary caries, wear and fracture. Most of practitioner want to get a composite which is more tougher under occlusal stress, less polymerization contraction, and better handling properties in application clinically. The aim of this study was to investigate the influence of resin matrix with various flows on the physical proper-ties such as fracture toughness and degree of conversion of the experimental resins. It was hypothesized that flexible or tough resin composites can be designed by judicious choice of monomer composition Various flow resin matrices containing Bis-GMA, UDMA, and TEG-DMA were made by altering the pro-portion of the monomers. After the unfilled resins were light-cured for different light intensity, the fracture toughness(K$_{1c}$) was measured according to ASTM standard using the single edge notched geometry, and degree of conversion(DC) was measured by FTIR. And experimental composites were formulated with variations in the proportion of silanated quartz and strontium glass fillers as 60, 75, and 77wt%. Also, the physical properties of composites with various filer contents were evaluated as same manner. All resulting data were compared by ANOVA/Tukeys test at 0.05 level. The results were as follows; 1. The degree of conversion of high flow resin containing less Bis-GMA was higher than that of low flow unfilled resin 2. While the degree of conversion of unfilled resin was increased according to light intensity for polymerization, there was no significant increase with moderate and high light intensity. Also, the fracture toughness was not increased by high light intensity. 3. The fracture toughness was high in the low flow unfilled resin containing higher contents of Bis-GMA. 4. There was a significant increase for fracture toughness and a tendency for degree of conversion to be reduced when the content of fillers was increased. 5. In the experimental composites, the flow of resin matrix did not affected on the fracture toughness, even, which was decreased as increase of viscosity. These results showed that the physical properties of a dental composite could be attributed to the flow of resin matrix with relative content of monomers. Specific combination of resin monomers should be designed to fulfil the needs of specific indication for use.

Stretchable Sensor Array Based on Lead-Free Piezoelectric Composites Made of BaTiO3 Nanoparticles and Polymeric Matrix (BaTiO3 압전나노입자와 폴리머로 제작된 비납계 압전복합체의 스트레쳐블 압전 센서 어레이로의 적용 연구)

  • Bae, Jun Ho;Ham, Seong Su;Park, Sung Cheol;Park, and Kwi-Il
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.312-317
    • /
    • 2022
  • Piezoelectric energy harvesting has attracted increasing attention over the last decade as a means for generating sustainable and long-lasting energy from wasted mechanical energy. To develop self-powered wearable devices, piezoelectric materials should be flexible, stretchable, and bio-eco-friendly. This study proposed the fabrication of stretchable piezoelectric composites via dispersing perovskite-structured BaTiO3 nanoparticles inside an Ecoflex polymeric matrix. In particular, the stretchable piezoelectric sensor array was fabricated via a simple and cost-effective spin-coating process by exploiting the piezoelectric composite comprising of BaTiO3 nanoparticles, Ecoflex matrix, and stretchable Ag coated textile electrodes. The fabricated sensor generated an output voltage of ~4.3 V under repeated compressing deformations. Moreover, the piezoelectric sensor array exhibited robust mechanical stability during mechanical pushing of ~5,000 cycles. Finite element method with multiphysics COMSOL simulation program was employed to support the experimental output performance of the fabricated device. Finally, the stretchable piezoelectric sensor array can be used as a self-powered touch sensor that can effectively detect and distinguish mechanical stimuli, such as pressing by a human finger. The fabricated sensor demonstrated potential to be used in a stretchable, lead-free, and scalable piezoelectric sensor array.

Impact of nanocomposite material to counter injury in physical sport in the tennis racket

  • Hao Jin;Bo Zhang;Xiaojing Duan
    • Advances in nano research
    • /
    • v.14 no.5
    • /
    • pp.435-442
    • /
    • 2023
  • Sports activities, including playing tennis, are popular with many people. As this industry has become more professionalized, investors and those involved in sports are sure to pay attention to any tool that improves athletes' performance Tennis requires perfect coordination between hands, eyes, and the whole body. Consequently, to perform long-term sports, athletes must have enough muscle strength, flexibility, and endurance. Tennis rackets with new frames were manufactured because tennis players' performance depends on their rackets. These rackets are distinguished by their lighter weight. Composite rackets are available in many types, most of which are made from the latest composite materials. During physical exercise with a tennis racket, nanocomposite materials have a significant effect on reducing injuries. Materials as strong as graphite and thermoplastic can be used to produce these composites that include both fiber and filament. Polyamide is a thermoplastic typically used in composites as a matrix. In today's manufacturing process, materials are made more flexible, structurally more vital, and lighter. This paper discusses the production, testing, and structural analysis of a new polyamide/Multi-walled carbon nanotube nanocomposite. This polyamide can be a suitable substitute for other composite materials in the tennis racket frame. By compression polymerization, polyamide was synthesized. The functionalization of Multi-walled carbon nanotube (MWCNT) was achieved using sulfuric acid and nitric acid, followed by ultrasonic preparation of nanocomposite materials with weight percentages of 5, 10, and 15. Fourier transform infrared (FTIR) and Nuclear magnetic resonance (NMR) confirmed a synthesized nanocomposite structure. Nanocomposites were tested for thermal resistance using the simultaneous thermal analysis (DTA-TG) method. scanning electron microscopy (SEM) analysis was used to determine pores' size, structure, and surface area. An X-ray diffraction analysis (XRD) analysis was used to determine their amorphous nature.