1 |
Rhim, J.-W., Park, H.-M., & Ha, C.-S. (2013). Bio-nanocomposites for food packaging applications. Progress in Polymer Science, 38(10-11), 1629-1652.
DOI
|
2 |
Roy, S., Shankar, S., & Rhim, J.-W. (2019). Melanin-mediated synthesis of silver nanoparticle and its use for the preparation of carrageenan-based antibacterial films. Food Hydro-colloids, 88, 237-246.
DOI
|
3 |
Saedi, S., & Rhim, J.-W. (2020). Synthesis of Fe3O4@ SiO2@ PAMAM dendrimer@AgNP hybrid nanoparticles for the preparation of carrageenan-based functional nanocomposite film. Food Packaging and Shelf Life, 24, 100473.
DOI
|
4 |
Campo, V. L., Kawano, D. F., da Silva Jr, D. B., & Carvalho, I. (2009). Carrageenans: Biological properties, chemical modifications and structural analysis - A review. Carbohydrate Polymers, 77(2), 167-180.
DOI
|
5 |
Usov, A. I. (1998). Structural analysis of red seaweed galactans of agar and carrageenan groups. Food Hydrocolloids, 12(3), 301-308.
DOI
|
6 |
Kanmani, P., & Rhim, J.-W. (2014a). Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles. Carbohydrate Polymers, 106, 190-199.
DOI
|
7 |
Shankar, S., Wang, L.-F., & Rhim, J.-W. (2017). Preparation and properties of carbohydrate-based composite films incorporated with CuO nanoparticles. Carbohydrate Polymers, 169, 264-271.
DOI
|
8 |
Ezati, P., & Rhim, J.-W. (2020). pH-responsive pectin-based multifunctional films incorporated with curcumin and sulfur nanoparticles. Carbohydrate Polymers, 230, 115638.
DOI
|
9 |
Priyadarshi, R., Kim, H.-J., & Rhim, J.-W. (2020). Effect of sulfur nanoparticles on properties of alginate-based films for active food packaging applications. Food Hydrocolloids, 106155.
DOI
|
10 |
Shankar, S., Jaiswal, L., & Rhim, J.-W. (2020). New insight into sulfur nanoparticles: Synthesis and applications. Critical Reviews in Environmental Science and Technology, http://doi.org/10.1080/10643389.2020.1780880
DOI
|
11 |
Chaudhuri, R. G., & Paria, S. (2011). Growth kinetics of sulfur nanoparticles in aqueous surfactant solutions. Journal of Colloid and Interface Science, 354(2), 563-569.
DOI
|
12 |
Shankar, S., & Rhim, J.-W. (2018). Preparation of sulfur nanoparticle-incorporated antimicrobial chitosan films. Food Hydrocolloids, 82, 116-123.
DOI
|
13 |
Massalimov, I. A., Shainurova, A. R., Khusainov, A. N., & Mustafin, A. G. (2012). Production of sulfur nanoparticles from aqueous solution of potassium polysulfide. Russian Journal of Applied Chemistry, 85(12), 1832-1837.
DOI
|
14 |
Deshpande, A. S., Khomane, R. B., Vaidya, B. K., Joshi, R. M., Harle, A. S., & Kulkarni, B. D. (2008). Sulfur nanoparticles synthesis and characterization from H2S gas, using novel biodegradable iron chelates in W/O microemulsion. Nanoscale Research Letters, 3(6), 221.
DOI
|
15 |
Paralikar, P., & Rai, M. (2017). Bio-inspired synthesis of sulphur nanoparticles using leaf extract of four medicinal plants with special reference to their antibacterial activity. IET Nanobiotechnology, 12(1), 25-31.
DOI
|
16 |
Saedi, S., Shokri, M., & Rhim, J.-W. (2020). Antimicrobial activity of sulfur nanoparticles: Effect of preparation methods. Arabian Journal of Chemistry. 13, 6580-6588.
DOI
|
17 |
Shankar, S., Pangeni, R., Park, J. W., & Rhim, J.-W. (2018). Preparation of sulfur nanoparticles and their antibacterial activity and cytotoxic effect. Materials Science and Engineering: C, 92, 508-517.
DOI
|
18 |
Gennadios, A., Weller, C. L., & Gooding, C. H. (1994). Measurement errors in water vapor permeability of highly permeable, hydrophilic edible films. Journal of Food Engineering, 21(4), 395-410.
DOI
|
19 |
Kanmani, P., & Rhim, J.-W. (2014b). Development and characterization of carrageenan/grapefruit seed extract composite films for active packaging. International Journal of Biological Macromolecules, 68, 258-266.
DOI
|
20 |
Calvo, M. E., Castro Smirnov, J. R., & Miguez, H. (2012). Novel approaches to flexible visible transparent hybrid films for ultraviolet protection. Journal of Polymer Science Part B: Polymer Physics, 50(14), 945-956.
DOI
|
21 |
Rhim, J.-W., & Wang, L.-F. (2014). Preparation and characterization of carrageenan-based nanocomposite films reinforced with clay mineral and silver nanoparticles. Applied Clay Science, 97, 174-181.
DOI
|
22 |
Vogler, E. A. (1998). Structure and reactivity of water at bio-material surfaces. Advances in Colloid and Interface Science, 74(1-3), 69-117.
DOI
|
23 |
Shankar, S., Kasapis, S., & Rhim, J.-W. (2018). Alginate-based nanocomposite films reinforced with halloysite nanotubes functionalized by alkali treatment and zinc oxide nanoparticles. International Journal of Biological Macromolecules, 118, 1824-1832.
DOI
|
24 |
Tang, X., Alavi, S., & Herald, T. J. (2008). Barrier and mechanical properties of starch-clay nanocomposite films. Cereal Chemistry, 85(3), 433-439.
DOI
|
25 |
Wang, L.-F., & Rhim, J.-W. (2017). Functionalization of halloysite nanotubes for the preparation of carboxymethyl cellulose-based nanocomposite films. Applied Clay Science, 150, 138-146.
DOI
|
26 |
Libenson, L., Hadley, F. P., McIlroy, A. P., Wetzel, V. M., & Mellon, R. R. (1953). Antibacterial effect of elemental sulfur. The Journal of Infectious Diseases, 93(1), 28-35.
DOI
|
27 |
Suleiman, M., Al-Masri, M., Al Ali, A., Aref, D., Hussein, A., Saadeddin, I., & Warad, I. (2015). Synthesis of nano-sized sulfur nanoparticles and their antibacterial activities. Journal of Materials and Environmental Science, 6(2), 513-518.
|
28 |
Rai, M., Ingle, A. P., & Paralikar, P. (2016). Sulfur and sulfur nanoparticles as potential antimicrobials: from traditional medicine to nanomedicine. Expert Review of Anti-Infective Therapy, 14(10), 969-978.
DOI
|