References
- Rhim, J.-W., Park, H.-M., & Ha, C.-S. (2013). Bio-nanocomposites for food packaging applications. Progress in Polymer Science, 38(10-11), 1629-1652. https://doi.org/10.1016/j.progpolymsci.2013.05.008
- Roy, S., Shankar, S., & Rhim, J.-W. (2019). Melanin-mediated synthesis of silver nanoparticle and its use for the preparation of carrageenan-based antibacterial films. Food Hydro-colloids, 88, 237-246. https://doi.org/10.1016/j.foodhyd.2018.10.013
- Saedi, S., & Rhim, J.-W. (2020). Synthesis of Fe3O4@ SiO2@ PAMAM dendrimer@AgNP hybrid nanoparticles for the preparation of carrageenan-based functional nanocomposite film. Food Packaging and Shelf Life, 24, 100473. https://doi.org/10.1016/j.fpsl.2020.100473
- Campo, V. L., Kawano, D. F., da Silva Jr, D. B., & Carvalho, I. (2009). Carrageenans: Biological properties, chemical modifications and structural analysis - A review. Carbohydrate Polymers, 77(2), 167-180. https://doi.org/10.1016/j.carbpol.2009.01.020
- Usov, A. I. (1998). Structural analysis of red seaweed galactans of agar and carrageenan groups. Food Hydrocolloids, 12(3), 301-308. https://doi.org/10.1016/S0268-005X(98)00018-6
- Kanmani, P., & Rhim, J.-W. (2014a). Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles. Carbohydrate Polymers, 106, 190-199. https://doi.org/10.1016/j.carbpol.2014.02.007
- Shankar, S., Wang, L.-F., & Rhim, J.-W. (2017). Preparation and properties of carbohydrate-based composite films incorporated with CuO nanoparticles. Carbohydrate Polymers, 169, 264-271. https://doi.org/10.1016/j.carbpol.2017.04.025
- Ezati, P., & Rhim, J.-W. (2020). pH-responsive pectin-based multifunctional films incorporated with curcumin and sulfur nanoparticles. Carbohydrate Polymers, 230, 115638. https://doi.org/10.1016/j.carbpol.2019.115638
- Priyadarshi, R., Kim, H.-J., & Rhim, J.-W. (2020). Effect of sulfur nanoparticles on properties of alginate-based films for active food packaging applications. Food Hydrocolloids, 106155. https://doi.org/10.1016/j.foodhyd.2020.106155
- Shankar, S., Jaiswal, L., & Rhim, J.-W. (2020). New insight into sulfur nanoparticles: Synthesis and applications. Critical Reviews in Environmental Science and Technology, http://doi.org/10.1080/10643389.2020.1780880
- Shankar, S., & Rhim, J.-W. (2018). Preparation of sulfur nanoparticle-incorporated antimicrobial chitosan films. Food Hydrocolloids, 82, 116-123. https://doi.org/10.1016/j.foodhyd.2018.03.054
- Massalimov, I. A., Shainurova, A. R., Khusainov, A. N., & Mustafin, A. G. (2012). Production of sulfur nanoparticles from aqueous solution of potassium polysulfide. Russian Journal of Applied Chemistry, 85(12), 1832-1837. https://doi.org/10.1134/S1070427212120075
- Deshpande, A. S., Khomane, R. B., Vaidya, B. K., Joshi, R. M., Harle, A. S., & Kulkarni, B. D. (2008). Sulfur nanoparticles synthesis and characterization from H2S gas, using novel biodegradable iron chelates in W/O microemulsion. Nanoscale Research Letters, 3(6), 221. https://doi.org/10.1007/s11671-008-9140-6
- Chaudhuri, R. G., & Paria, S. (2011). Growth kinetics of sulfur nanoparticles in aqueous surfactant solutions. Journal of Colloid and Interface Science, 354(2), 563-569. https://doi.org/10.1016/j.jcis.2010.11.039
- Paralikar, P., & Rai, M. (2017). Bio-inspired synthesis of sulphur nanoparticles using leaf extract of four medicinal plants with special reference to their antibacterial activity. IET Nanobiotechnology, 12(1), 25-31. https://doi.org/10.1049/iet-nbt.2017.0079
- Saedi, S., Shokri, M., & Rhim, J.-W. (2020). Antimicrobial activity of sulfur nanoparticles: Effect of preparation methods. Arabian Journal of Chemistry. 13, 6580-6588. https://doi.org/10.1016/j.arabjc.2020.06.014
- Shankar, S., Pangeni, R., Park, J. W., & Rhim, J.-W. (2018). Preparation of sulfur nanoparticles and their antibacterial activity and cytotoxic effect. Materials Science and Engineering: C, 92, 508-517. https://doi.org/10.1016/j.msec.2018.07.015
- Gennadios, A., Weller, C. L., & Gooding, C. H. (1994). Measurement errors in water vapor permeability of highly permeable, hydrophilic edible films. Journal of Food Engineering, 21(4), 395-410. https://doi.org/10.1016/0260-8774(94)90062-0
- Calvo, M. E., Castro Smirnov, J. R., & Miguez, H. (2012). Novel approaches to flexible visible transparent hybrid films for ultraviolet protection. Journal of Polymer Science Part B: Polymer Physics, 50(14), 945-956. https://doi.org/10.1002/polb.23087
- Kanmani, P., & Rhim, J.-W. (2014b). Development and characterization of carrageenan/grapefruit seed extract composite films for active packaging. International Journal of Biological Macromolecules, 68, 258-266. https://doi.org/10.1016/j.ijbiomac.2014.05.011
- Rhim, J.-W., & Wang, L.-F. (2014). Preparation and characterization of carrageenan-based nanocomposite films reinforced with clay mineral and silver nanoparticles. Applied Clay Science, 97, 174-181. https://doi.org/10.1016/j.clay.2014.05.025
- Vogler, E. A. (1998). Structure and reactivity of water at bio-material surfaces. Advances in Colloid and Interface Science, 74(1-3), 69-117. https://doi.org/10.1016/S0001-8686(97)00040-7
- Shankar, S., Kasapis, S., & Rhim, J.-W. (2018). Alginate-based nanocomposite films reinforced with halloysite nanotubes functionalized by alkali treatment and zinc oxide nanoparticles. International Journal of Biological Macromolecules, 118, 1824-1832. https://doi.org/10.1016/j.ijbiomac.2018.07.026
- Tang, X., Alavi, S., & Herald, T. J. (2008). Barrier and mechanical properties of starch-clay nanocomposite films. Cereal Chemistry, 85(3), 433-439. https://doi.org/10.1094/CCHEM-85-3-0433
- Wang, L.-F., & Rhim, J.-W. (2017). Functionalization of halloysite nanotubes for the preparation of carboxymethyl cellulose-based nanocomposite films. Applied Clay Science, 150, 138-146. https://doi.org/10.1016/j.clay.2017.09.023
- Libenson, L., Hadley, F. P., McIlroy, A. P., Wetzel, V. M., & Mellon, R. R. (1953). Antibacterial effect of elemental sulfur. The Journal of Infectious Diseases, 93(1), 28-35. https://doi.org/10.1093/infdis/93.1.28
- Suleiman, M., Al-Masri, M., Al Ali, A., Aref, D., Hussein, A., Saadeddin, I., & Warad, I. (2015). Synthesis of nano-sized sulfur nanoparticles and their antibacterial activities. Journal of Materials and Environmental Science, 6(2), 513-518.
- Rai, M., Ingle, A. P., & Paralikar, P. (2016). Sulfur and sulfur nanoparticles as potential antimicrobials: from traditional medicine to nanomedicine. Expert Review of Anti-Infective Therapy, 14(10), 969-978. https://doi.org/10.1080/14787210.2016.1221340
Cited by
- Carrageenan-Based Antimicrobial Films Integrated with Sulfur-Coated Iron Oxide Nanoparticles (Fe3O4@SNP) vol.3, pp.10, 2020, https://doi.org/10.1021/acsapm.1c00690