• Title/Summary/Keyword: Flexible bodies

Search Result 95, Processing Time 0.029 seconds

Study on Behavior of Slender Bodies in Waves (세장체의 파랑중 거동에 대한 실험에 관한 고찰)

  • Lee, Seung Jae;Kang, Donghoon;Jo, Hyo Jae;Shin, Da Rae
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.29-35
    • /
    • 2013
  • The exploration areas for maritime resources such as oil and natural gas have gradually moved to deep sea areas. It has become difficult to use existing fixed marine structures, which are very costly to build, because that have reached the uppermost economic limit. Therefore, floating marine structures and flexible marine structures are preferred. In particular, slender bodies such as risers and pipes are important parts of ocean depth marine structures. These slender bodies have more flexible structural characteristics in deep water areas because their overall length becomes longer and thediameter/length slenderness ratio gets smaller. In addition, the dynamic behavior of slender bodies becomes complicated as external forces such as tides and waves act on it directly. In this study, in order to solve these problems, we performed model tests in a 2-D wave basin using flexible slender bodies with different modulus of elasticity values. As a result, we compiled statistics and compared the behaviors of flexible slender bodies with respect to the effect of the modulus of elasticity. We expect that the results could be used as reference data for the design of structures with flexible elements.

Dynamic Analysis of a Body Moving on a Flexible Structure (유연한 구조물 위를 주행하는 물체의 동역학적 해석)

  • 이기수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1674-1684
    • /
    • 1994
  • An efficient iterative method is presented for the dynamic analysis of bodies moving on flexible structures. In contrast to traditional approaches, the nominal motion of the body is considered here as an unknown. The correct contact forces between the bodies and the flexible structures are computed by an iterative method reducing the specially defined error vectors to zero, and thus satisfying the constraints between the bodies and the structures. Even thought only simple equations of motions and simple time integrators are adopted, the correct solutions are economically obtained and the Timoshenko paradox is completely resolved. Numerical simulations are conducted demonstrate the accuracy and reliability of the solution and to compare the results with the reference.

Analysis of a Flexible Multi-body System with Over-constraints (여유구속을 갖는 유연체 기계시스템의 동역학 해석)

  • Seo, Jong-Hwi;Park, Tae-Won;Chae, Jang-Soo;Seo, Hyun-Seok
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.874-880
    • /
    • 2003
  • Many mechanical systems are over-constrained if only rigid bodies are used to model the system. One example of such system is a satellite system with solar panels. To avoid this over-constrained problem, solar panels can be modeled as flexible bodies. The CMS(Component Mode Synthesis) method is widely used to analyze the flexible multi-body system because it can considerably approximate the deformation of the flexible bodies using small number of well-selected mode. However, it is very difficult to decide the boundary condition and the selection of modes. In this paper, the methods for mode synthesis and setting the boundary condition are presented to analyze the flexible multi-body system with over-constraints. Finally, the reliability of proposed method is verified by solar panel's deployment test.

  • PDF

Development of a Computer Program for the Dynamic Analysis of Mount System with Flexible Bodies (탄성체를 포함하는 마운트계의 동역학 해석 프로그램 개발)

  • Lee, Byeong-Hun;Kim, Gyeong-U;Jeong, U-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.94-102
    • /
    • 2000
  • A computer program for three dimensional dynamic analysis of a mount system composed of rigid or flexible bodies and mount elements is developed. Cartesian coordinates and Euler parameters are used to specify the positions and orientations of the bodies. The equations of motion are formulated using Langrange equation and Langrange multiplier technique. The developed program includes routine, for inclined mount elements, several kinds of driving constrains, and external forces. The Static equilibrium analysis routine is also developed using iterative method.

A Study on the Simulation of Operational Characteristics of Industrial Robot for Automated Manufacturing System (생산자동화 시스템을 위한 산업용 로봇의 운전특성 시뮬레이션에 관한 연구)

  • Kim, Jin-Kwang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.5
    • /
    • pp.405-410
    • /
    • 2017
  • This paper deals with 3D simulation of industrial robot for automated manufacturing system. In order to evaluate the operational characteristics of the industrial robot system in the worst case motion scenario, flexible - rigid multibody analysis was performed. Then, the rigid body dynamics analysis was performed and the results were compared with the flexible - rigid multibody analysis. Modal analysis was also performed to confirm the dynamic characteristics of the robot system. In the case of the flexible-rigid multibody simulation, only the structural members of interest were modeled as elastic bodies to confirm the stress state. The remaining structural members were modeled as rigid bodies to reduce computer resources.

A Systematic Formulation for Dynamics of Flexible Multibody Systems (탄성 다물체계의 체계적인 동역학적 해석)

  • 이병훈;유완석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2483-2490
    • /
    • 1993
  • This paper presents a systematic formulation for the kinematic and dynamic analysis of flexible multibody systems. The system equations of motion are derived in terms of relative and elastic coordinates using velocity transformation technique. The position transformation equations that relate the relative and elastic coordinates to the Cartesian coordinates for the two contiguous flexible bodies are derived. The velocity transformation matrix is derived systematically corresponding to the type of kinematic joints connecting the bodies and system path matrix. This matrix is employed to represent the equations of motion in relative coordinate space. Two examples are taken to test the method developed here.

Topology Optimization of a Vibrating System of Rigid and Flexible Bodies for Maximizing Repeated Eigenfrequencies (중복 고유 진동수를 갖는 진동하는 강체-유연체 계의 위상최적설계)

  • Ahn, Byungseong;Kim, Suh In;Kim, Yoon Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.363-372
    • /
    • 2016
  • When a system consisting of rigid and flexible bodies is optimized to improve its dynamic characteristics, its eigenfrequencies are typically maximized. While topology optimization formulations dealing with simultaneous design of a system of rigid and flexible bodies are available, studies on eigenvalue maximization of the system are rare. In particular, no work has solved for the case when the target frequency becomes one of the repeated eigenfrequencies. The problem involving repeated eigenfrequencies is solved in this study, and a topology optimization formulation and sensitivity analysis are presented. Further, several numerical case studies are considered to demonstrate the validity of the proposed formulation.

A Study on Shape Measuring Technique of a Yacht Sail (요트세일의 형상계측 기법 연구)

  • Kim, Choul-Hee;Choi, Jung-Kyu;Kim, Hyoung-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.1
    • /
    • pp.93-98
    • /
    • 2012
  • In this study, we introduced image processing technic to measure shape variations of general bodies and applied it to the flexible yacht sail. Shape measurements of simple bodies sails were carried out and results showed that technic can be a reliable method to measure shape variations of the flexible yacht sail. The sail shape variation of 30ft sloop type yacht sail is measured on different sailing conditions. As velocity and direction of wind are increased, trailing edges in the upper part of the sail become more open than the lower part of the sail which are not changed. So it is confirmed that the shape measurement of a sail shape depending on a sailing condition is possible to use image processing scheme.

Inverse Dynamic Analysis of Flexible Multibody System in the Joint Coordinate Space (탄성 다물체계에 대한 조인트좌표 공간에서의 역동역학 해석)

  • Lee, Byung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.352-360
    • /
    • 1997
  • An inverse dynamic procedure for spatial multibody systems containing flexible bodies is developed in the relative joint coordinate space. Constraint acceleration equations are derived in terms of relative coordinates using the velocity transformation technique. An inverse velocity transformation operator, which transforms the Cartesian velocities to the relative velocities, is derived systematically corresponding to the types of kinematic joints connecting the bodies and the system reference matrix. Using the resulting matrix, the joint reaction forces and moments are analyzed in the Cartesian coordinate space. The formulation is illustrated by means of two numerical examples.

Treatments of esophageal foreign body treated using Rigid esophagoscopy (강직형식도경술을 이용하여 치료한 이물에 대한 임상적 고찰)

  • Chung, Phil-Sang;Jung, Seung-Wan;Kim, Yun-Hwan
    • Korean Journal of Bronchoesophagology
    • /
    • v.5 no.2
    • /
    • pp.159-163
    • /
    • 1999
  • OBJECTIVE : To study the management (diagnostic and therapeutic) of esophageal foreign bodies with rigid esophagoscopy. MATERIAL AND METHODS : All 100 patients admitted to the Dankook University Hospital for ingestion of foreign bodies between May 1994 and July 1999. The outcome for each patient was determined by examining hospital records of demographic information, identification of the foreign body and the removal procedure used. RESULTS : Rigid esophagoscopy was performed for suspected foreign bodies in 100 cases an impacted. The most frequent location was the upper third of the esophagus (68%). The most common type of foreign body was fish bones in adult(61%) and coins in children(70%). In 12 patients. flexible endoscopy had failed previously to remove the foreign body and 4 cases were migrated esophageal metal stent in esophageal stenosis. CONCLUSIONS : The rigid esophagoscopy is appropriate techniques for managing esophageal foreign bodies.

  • PDF