Browse > Article
http://dx.doi.org/10.5574/KSOE.2013.27.3.029

Study on Behavior of Slender Bodies in Waves  

Lee, Seung Jae (Division of Naval Architecture and Ocean Systems Engineering, Korea Maritime University)
Kang, Donghoon (Department of Naval Architecture and Ocean Engineering, Gyeongsang National University)
Jo, Hyo Jae (Division of Naval Architecture and Ocean Systems Engineering, Korea Maritime University)
Shin, Da Rae (ZENTECH Engineering)
Publication Information
Journal of Ocean Engineering and Technology / v.27, no.3, 2013 , pp. 29-35 More about this Journal
Abstract
The exploration areas for maritime resources such as oil and natural gas have gradually moved to deep sea areas. It has become difficult to use existing fixed marine structures, which are very costly to build, because that have reached the uppermost economic limit. Therefore, floating marine structures and flexible marine structures are preferred. In particular, slender bodies such as risers and pipes are important parts of ocean depth marine structures. These slender bodies have more flexible structural characteristics in deep water areas because their overall length becomes longer and thediameter/length slenderness ratio gets smaller. In addition, the dynamic behavior of slender bodies becomes complicated as external forces such as tides and waves act on it directly. In this study, in order to solve these problems, we performed model tests in a 2-D wave basin using flexible slender bodies with different modulus of elasticity values. As a result, we compiled statistics and compared the behaviors of flexible slender bodies with respect to the effect of the modulus of elasticity. We expect that the results could be used as reference data for the design of structures with flexible elements.
Keywords
Slender body; Model test; Elastic body; Regular wave;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Burke, B., 1974. An Analysis of Marine Risers for Deep Water, Offshore Technology Conference, Journal of Petroleum Technology, 26(4), 455-465.
2 Chena, Y., Chaib, Y.H., Lia, X., Zhoua, J., 2009. An Extraction of the Natural Frequencies and Mode Shapes of Marine Risers by the Method of Differential Transformation. Computers and Structures. 87(21-22), 1384-1393.   DOI   ScienceOn
3 Chucheepsakkul, S., Huang, T., Laohapotjanart, P., 1995. Effect of Axial Deformation on the Equilibrium Configurations of Marine Cable. Proc. of the 5th International Offshore and Polar Engineering Conference, 2, 224-248.
4 Hong, Y.P., Nakamura, M., Koterayama, W., 2002. An Experimental and Numerical Study on Dynamics of Flexible Free Hanging Riser. Proceedings of The Fifth ISOPE Paci fic/Asia Offshore Mechanics Symposium, 131-140.
5 Huang, T., 1992. A Static Equilibrium Formulation including Axial Deformation for Marine Cables. Proceeding of International Offshore and Polar Engineering Conference, 2, 252-255.