• Title/Summary/Keyword: Fixture-error

Search Result 29, Processing Time 0.027 seconds

Marginal Bone Resorption Analysis of Dental Implant Patients by Applying Pattern Recognition Algorithm (패턴인식 알고리즘을 적용한 임플란트 주변골 흡수 분석)

  • Jung, Min Gi;Kim, Soung Min;Kim, Myung Joo;Lee, Jong Ho;Myoung, Hoon;Kim, Myung Jin
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.35 no.3
    • /
    • pp.167-173
    • /
    • 2013
  • Purpose: The aim of this study is to analyze the series of panoramic radiograph of implant patients using the system to measure peri-implant crestal bone loss according to the elapsed time from fixture installation time to more than three years. Methods: Choose 10 patients having 45 implant fixtures installed, which have series of panoramic radiograph in the period to be analyzed by the system. Then, calculated the crestal bone depth and statistics and selected the implant in concerned by clicking the implant of image shown on the monitor by the implemented pattern recognition system. Then, the system recognized the x, y coordination of the implant and peri-implant alveolar crest, and calculated the distance between the approximated line of implant fixture and alveolar crest. By applying pattern recognition to periodic panoramic radiographs, we attained the results and made a comparison with the results of preceded articles concerning peri-implant marginal bone loss. Analyzing peri-implant crestal bone loss in a regression analysis periodic filmed panoramic radiograph, logarithmic approximation had highest $R^2$ value, and the equation is as shown below. $y=0.245Logx{\pm}0.42$, $R^2=0.53$, unit: month (x), mm (y) Results: Panoramic radiograph is a more wide-scoped view compared with the periapical radiograph in the same resolution. Therefore, there was not enough information in the radiograph in local area. Anterior portion of many radiographs was out of the focal trough and blurred precluding the accurate recognition by the system, and many implants were overlapped with the adjacent structures, in which the alveolar crest was impossible to find. Conclusion: Considering the earlier objective and error, we expect better results from an analysis of periapical radiograph than panoramic radiograph. Implementing additional function, we expect high extensibility of pattern recognition system as a diagnostic tool to evaluate implant-bone integration, calculate length from fixture to inferior alveolar nerve, and from fixture to base of the maxillary sinus.

Measurement of the Volumetric Thermal Errors for CNC Machining Center Using the Star-type-styluses Tough Probe

  • Lee, Jae-Jong;Yang, Min-Yang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.111-117
    • /
    • 2000
  • One of the major limitations of productivity and quality in metal cutting is the machining accuracy of machine tools. The machining accuracy is affected by geometric errors, thermally-induced errors, and the deterioration of the machine tools. Geometric and thermal errors of machine tools should be measured and compensated to manufacture high quality products. In metal cutting, the machining accuracy is more affected by thermal errors than by geometric errors. This paper models the thermal errors for error analysis and develops an on-the-machine measurement system by which the volumetric errors are measured and compensated. The thermal error is modeled by means of angularity errors of a column and thermal drift error of the spindle unit which are measured by the touch probe unit with a star type styluses and a designed spherical ball artifact (SBA). Experiments show that the developed system provides a high measuring accuracy, with repeatability of $\pm$2$\mu\textrm{m}$ in X, Y and Z directions. It is believed that the developed measurement system can be also applied to the machine tools with CNC controller. In addition, machining accuracy and product quality can be also improved by using the developed measurement system when the spherical ball artifact is mounted on a modular fixture.

  • PDF

Design of a Two-Axis Force Sensor for Measuring Arm Force of an Upper-Limb Rehabilitation Robot (상지재활로봇의 팔힘측정용 2축 힘센서 설계)

  • Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.137-143
    • /
    • 2015
  • This paper describes the design of a two-axis force sensor with two step plate beams for measuring forces in an upper-limb rehabilitation robot. The two-axis force sensor is composed of a Fz force sensor and a Ty torque sensor. The Fz force sensor measures the force applied to a patient's arm pushed by a rehabilitation robot and the force of patient's arm. The Ty torque sensor measures the torque generated by a patient's arm motion in an emergency. The structure of sensor is composed of a force transmitting block, two step plate beams and two fixture blocks. The two-axis force sensor was designed using FEM (Finite Element Method), and manufactured using strain-gages. The characteristics test of the two-axis force sensor was carried out. as a test results, the interference error of the two-axis force sensor was less than 1.24%, the repeatability error of each sensor was less than 0.03%, and the non-linearity was less than 0.02%.

A Study on Fp Z/8 of Anti-Backlash Gear in an Engine (엔진용 백래쉬 방지 기어의 Fp Z/8에 관한 연구)

  • Zhong, Xing;Lv, Jianhua;Lu, Hao;Zhou, Rui;Guo, Jianyu;Kai, Lang;Qin, Zhen;Zhang, Qi;Lyu, Sungki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.24-30
    • /
    • 2020
  • The high speed of an engine balance box may cause significant additional gear noise. Gear accuracy is the most useful key to reduce gear noise, but the small tooth width and thin-walled anti-backlash gear introduce challenges to the manufacturing process. In order to reduce the gear noise caused by gear pitch error, this paper investigates the correlation between influencing factors and gear pitch error by analyzing the processing technology, tooling fixture, and equipment accuracy. By improving the process and optimizing the gear design, the gear machining accuracy was improved and the processing cost was saved.

Development of In-Flex System using the Flexibility Aluminum Clad Cable (가요성 알루미늄피 케이블을 이용한 인플렉스 시스템의 개발)

  • Jung, Soon-Won;Koo, Kyung-Wan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.2
    • /
    • pp.178-183
    • /
    • 2009
  • The developed in-flex system completed the wiring work with the plug-in connection. To maintain electrical and mechanical stability, and an insulation between the conductors was strengthened by forming a partition. Moreover, the error according to a bad connection was prevented by separating the inlet from the outlet of the electric trace and thus the quick construction become possible. The metal reinforcing material was added outside the upper case and lower case. The fire-resistance efficiency was maximized in order to minimize a damage by the fire. As to the developed system, we found that it takes shorter time to complete installation than the rigid steel conduit wiring work, and that about 25 % of construction cost was saved because the labor costs decrease due to the shorter construction period of time.

A Basic Research for the Development of Generalized Shape Guided Automatic Deburring Machine (형상안내형 범용형상자동면취기의 개발을 위한 기초연구)

  • Kim, Sang-Myng;Jung, Yoon-Gyo;Cho, Sung-Leem
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.104-109
    • /
    • 2012
  • Recently, the deburring process which is last process of manufacture is one of the important process for complete product. The manual deburring process can cause not only higher error rate but also irregular shape and quality of product. Therefore, Shape Guided Automatic Deburring Machine has been developed to resolve the above problems. But the Shape Guided Automatic Deburring Machine have been applied only to produce a circular product. Therefore, this machine is difficult to apply to products of various shapes. To solve this problem, we would like to develop Generalized Shape Guided Automatic Deburring Machine applicable to various shapes. To this end, we have done the modeling and design using CATIA program and have performed machine simulation.

Design and Evaluation of Uncertainty for 6-component Force/Moment Calibration Machine (6분력 힘/모멘트 교정기의 설계 및 불확도 평가)

  • 김갑순;강대임;송후근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.68-72
    • /
    • 1997
  • This paper presents the design and the evaluation of the 6-component force/moment calibration machine which h a s t h e maximum capacities of 500 N in forces and 50 Nm in moments. This calibration machine consists of body. fixture. force generating system, moment generating system. The expanded uncertainty of the calibration machine is evaluated by calculating the A type uncertainty. $U_A$ and B type uncertainty, $U_B$. The evaluation results. this system has the expanded uncertainty of less than $2{\times}10^[-2]$ in respective force and moment components.

  • PDF

A Dual Vacuum Wafer Prealigner and a Multiple Level Structure (2단 진공 웨이퍼 정렬장치 및 다층 구조 설계)

  • Kim, H.T.;Choi, M.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.8 no.3
    • /
    • pp.14-20
    • /
    • 2011
  • This study aims at aligning multiple wafers to reduce wafer handling time in wafer processes. We designed a multilevel structure for a prealigner which can handle multiple wafer simultaneously in a system. The system consists of gripping parts, kinematic parts, vacuum chucks, pneumatic units, hall sensors and a DSP controller. Aligning procedure has two steps: mechanical gripping and notch finding. In the first step, a wafer is aligned in XY directions using 4-point mechanical contact. The rotational error can be found by detecting a signal in a notch using hall sensors. A dual prealigner was designed for 300mm wafers and constructed for a performance test. The accuracy was monitored by checking the movement of a notch in a machine vision. The result shows that the dual prealigner has enough performance as commercial products.

Development of 6-component Force/Moment Calibration Machine (6분력 힘/모멘트 교정기의 개발)

  • 김갑순;강대임
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.127-134
    • /
    • 1998
  • This paper describes the design of a 6-component force/moment calibration machine with having the maximum capacities of 500 N in forces and 50 Nm in moments. To be used for the characteristic of a multi-component load cell. this machine consists of a body, a fixture, a force generating system, a moment generating system and weights. We have also evaluated the accuracy of the calibration machine. Test results show that the expanded relative uncertainty for force components $\pmFx,\;\pmFy\;and\;moment\;components\;\pmMx,\;\pmMy\;are\;less\; than\;8.6\times10^{-4}$, and force components +Fz, -Fz and moment components $\pmMz\;is\;less\;than\;1.6\times10^{-3},\;2.0\times10^{-5},\;1.7\times10^{-3}$ respectively.

  • PDF

Development of Spot Welding and Arc Welding Dual Purpose Robot Automation System (점용접 및 아크용접 겸용 로봇 자동화시스템 개발)

  • Lee, Yong-Joong;Kim, Tae-Won;Lee, Hyung-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.4
    • /
    • pp.73-80
    • /
    • 2004
  • A dual purpose robot automation system is developed for both arc welding and spot welding by one robot within a cell. The need for automation of both arc welding and spot welding processes is urgent while the production volume is not so big as to accommodate separate station for the two processes. Also, space is too narrow for separate station to be settled down in the factory. A spot welding robot is chosen and the function for arc welding are implemented in-house at cost of advanced functions. For the spot welding, a single pole type gun is used and the robot has to push down the plate to be welded, which causes the robot positioning error. Therefore, position error compensation algorithm is developed. The basic functions for the arc welding processes are implemented using the digital I/O board of robot controller, PLC, and A/D conversion PCB. The weaving pattern is taught in meticulously by manual teach. A fixture unit is also developed for dual purpose. The main aspects of the system is presented in this paper especially in the design and implementation procedure. The signal diagrams and sequence logic diagrams are also included. The outcome of the dual purpose welding cell is the increased productivity and good production stability which is indispensable for production volume prediction. Also, it leads to reduction of manufacturing lead time.

  • PDF