• 제목/요약/키워드: First Order Method

검색결과 5,860건 처리시간 0.039초

A FIFTH ORDER NUMERICAL METHOD FOR SINGULARLY PERTURBED DIFFERENTIAL-DIFFERENCE EQUATIONS WITH NEGATIVE SHIFT

  • Chakravarthy, P. Pramod;Phaneendra, K.;Reddy, Y.N.
    • Journal of applied mathematics & informatics
    • /
    • 제27권1_2호
    • /
    • pp.441-452
    • /
    • 2009
  • In this paper, a fifth order numerical method is presented for solving singularly perturbed differential-difference equations with negative shift. In recent papers the term negative shift has been using for delay. Similar boundary value problems are associated with expected first exit time problem of the membrane, potential in models for neuron and in variational problems in control theory. In the numerical treatment for such type of boundary value problems, first we use Taylor approximation to tackle terms containing small shifts which converts it to a boundary value problem for singularly perturbed differential equation. The two point boundary value problem is transformed into general first order ordinary differential equation system. A discrete approximation of a fifth order compact difference scheme is presented for the first order system and is solved using the boundary conditions. Several numerical examples are solved and compared with exact solution. It is observed that present method approximates the exact solution very well.

  • PDF

1차 미분 근사를 이용한 MLS차분법의 동적해석 (Dynamic Analysis of MLS Difference Method using First Order Differential Approximation)

  • 김경환;윤영철;이상호
    • 한국전산구조공학회논문집
    • /
    • 제31권6호
    • /
    • pp.331-337
    • /
    • 2018
  • 본 논문은 MLS(moving least squares) 차분법의 1차 미분 근사함수를 바탕으로 시간에 따른 수치해석이 가능한 해석기법을 제시한다. 오직 1차 미분 근사함수로만 지배방정식을 이산화했으며, 근사함수를 조립하는 형태로 전체 시스템 방정식을 구성하여 차분법으로 이산화된 운동방정식이 유한요소법(finite element method)과 유사한 모습을 갖게 되었다. 운동방정식을 시간적분하기 위해서 중앙차분법(central difference method)을 사용하였다. 유한요소 알고리즘을 통해서 MLS 차분법과 유한요소법의 고유진동 해석을 수행하였으며, 두 해석결과를 비교하였다. 또한, 동적해석 결과를 기존의 2차 미분 근사함수를 활용한 해석결과와 함께 도시함으로써 제안된 수치기법의 정확성을 검증하였다. 1차 미분 근사함수를 조립하는 과정에서 해석결과의 떨림현상이 억제되었으며 상대적으로 균일한 응력분포를 구할 수 있었다.

DISCONTINUOUS GALERKIN SPECTRAL ELEMENT METHOD FOR ELLIPTIC PROBLEMS BASED ON FIRST-ORDER HYPERBOLIC SYSTEM

  • KIM, DEOKHUN;AHN, HYUNG TAEK
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제25권4호
    • /
    • pp.173-195
    • /
    • 2021
  • A new implicit discontinuous Galerkin spectral element method (DGSEM) based on the first order hyperbolic system(FOHS) is presented for solving elliptic type partial different equations, such as the Poisson problems. By utilizing the idea of hyperbolic formulation of Nishikawa[1], the original Poisson equation was reformulated in the first-order hyperbolic system. Such hyperbolic system is solved implicitly by the collocation type DGSEM. The steady state solution in pseudo-time, which is the solution of the original Poisson problem, was obtained by the implicit solution of the global linear system. The optimal polynomial orders of 𝒪(𝒽𝑝+1)) are obtained for both the solution and gradient variables from the test cases in 1D and 2D regular grids. Spectral accuracy of the solution and gradient variables are confirmed from all test cases of using the uniform grids in 2D.

A FIFTH ORDER NUMERICAL METHOD FOR SINGULAR PERTURBATION PROBLEMS

  • Chakravarthy, P. Pramod;Phaneendra, K.;Reddy, Y.N.
    • Journal of applied mathematics & informatics
    • /
    • 제26권3_4호
    • /
    • pp.689-706
    • /
    • 2008
  • In this paper, a fifth order numerical method is presented for solving singularly perturbed two point boundary value problems with a boundary layer at one end point. The two point boundary value problem is transformed into general first order ordinary differential equation system. A discrete approximation of a fifth order compact difference scheme is presented for the first order system. An asymptotically equivalent first order equation of the original singularly perturbed two point boundary value problem is obtained from the theory of singular perturbations. It is used in the fifth order compact difference scheme to get a two term recurrence relation and is solved. Several linear and non-linear singular perturbation problems have been solved and the numerical results are presented to support the theory. It is observed that the present method approximates the exact solution very well.

  • PDF

Taylor Series Discretization Method for Input-Delay Nonlinear Systems

  • 장정;정길도
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.152-154
    • /
    • 2007
  • Anew discretization method for the input-driven nonlinear continuous-time system with time delay is proposed. It is based on the combination of Taylor series expansion and first-order hold assumption. The mathematical structure of the new discretization scheme is explored. The performance of the proposed discretization procedure is evaluated by case studies. The results demonstrate that the proposed discretization scheme can assure the system requirements even though under a large sampling period. A comparison between first order hold and zero-order hold is simulated also.

  • PDF

UTD 고차회절을 고려한 쌍곡면 반사판 아테나의 전자파 산란 특성 (Electromagnetic scattering characteristics of a hyperbolic reflector antenna accounting for the UTD higher order diffraction)

  • 최재훈;이병우;이상설
    • 전자공학회논문지A
    • /
    • 제33A권5호
    • /
    • pp.85-93
    • /
    • 1996
  • The far-zone scattered field patterns of a hyperbolic reflector antenna are analyzed by using uniform geometrical theory of diffraction(UTD). The main objective of this paper is to obtain the higher order diffraction contributions which provide the continuity over the shadow boundaries of the first order solution. to obtain the scattered magnetic field characteristics, the scattered field components of the secodn-order diffraction, diffraction-reflection, diffraction-reflection-diffraction terms are added to the result of the previous research. The results of the present research are compared to those of the first order solution and the method of moments. One can observe the improvemtn of the current approach over the first order solution. also, the results of the present method agree very well with those of the moment methods especially in the transition regions near the first order diffraction shadow boundaries.

  • PDF

New Type of Collision Attack on First-Order Masked AESs

  • Kim, Hee Seok;Hong, Seokhie
    • ETRI Journal
    • /
    • 제38권2호
    • /
    • pp.387-396
    • /
    • 2016
  • This paper introduces a new type of collision attack on first-order masked Advanced Encryption Standards. This attack is a known-plaintext attack, while the existing collision attacks are chosen-plaintext attacks. In addition, our method requires significantly fewer power measurements than any second-order differential power analysis or existing collision attacks.

Design of First Order Controllers with Time Domain Specifications(ICCAS 2003)

  • Kim, Keun-Sik;Woo, Young-Tae;Kim, Young-Chol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1-6
    • /
    • 2003
  • This paper considers the problem of determining a set of stabilizing first order controller gains, for a given linear time invariant plant, that meets or exceeds closed loop step response specifications. The method utilizes two recent results: For a given system, (1) finding a set of stabilizing first order controller gains and (2) the relationship between time response (overshoot and speed) and the coefficients of the characteristic polynomial. The method allows us to extract a subset of first order controller gains that meets stability as well as time domain performance requirements. The computations involved are the intersections of two dimensional sets described by linear and quadratic inequalities in the controller design space. It is illustrated by examples.

  • PDF

시간지연에 의한 일차홀드 방식을 포함하는 가상벽 모델의 안정성 영향 분석 (Effects of the time delay on the stability of a virtual wall model with a first-order-hold method)

  • 이경노
    • 융복합기술연구소 논문집
    • /
    • 제4권2호
    • /
    • pp.17-21
    • /
    • 2014
  • This paper presents the effects of the time delay on the stability of the haptic system that includes a virtual wall and a first-order-hold method. The model of a haptic system includes a haptic device model with a mass and a damper, a virtual wall model, a first-order-hold model and a time delay model. In this paper, the time delay is considered as the computational time delay that is assumed to be as much as the sampling time. As the time delay increases, the maximal available stiffness of a virtual wall model is reduced reversely. The relation among the time delay and the maximum available stiffness, the mass and the damper of the haptic device are analyzed using the MATLAB simulation.

Exact mathematical solution for free vibration of thick laminated plates

  • Dalir, Mohammad Asadi;Shooshtari, Alireza
    • Structural Engineering and Mechanics
    • /
    • 제56권5호
    • /
    • pp.835-854
    • /
    • 2015
  • In this paper, the modified form of shear deformation plate theories is proposed. First, the displacement field geometry of classical and the first order shear deformation theories are compared with each other. Using this comparison shows that there is a kinematic relation among independent variables of the first order shear deformation theory. So, the modified forms of rotation functions in shear deformation theories are proposed. Governing equations for rectangular and circular thick laminated plates, having been analyzed numerically so far, are solved by method of separation of variables. Natural frequencies and mode shapes of the plate are determined. The results of the present method are compared with those of previously published papers with good agreement obtained. Efficiency, simplicity and excellent results of this method are extensible to a wide range of similar problems. Accurate solution for governing equations of thick composite plates has been made possible for the first time.