References
- Basset, A.B. (1890), "On the extension and flexure of cylindrical and spherical thin elastic shells", Philos. Trans. R. Soc. London, B, Biol. Sci., 181, 433-480. https://doi.org/10.1098/rsta.1890.0007
- Bernoulli, J. (1789), "Essai theorique sur les vibrations de plaques elastiques rectangulaires et Libres", Nova Acta Acad, Petropolit, 5, 197-219.
- Chakraverty, S. (2009), Vibration of Plates, CRC Press, New York, US.
- Chen, W.Q. and Lue, C.F. (2005), "3D vibration analysis of cross-ply laminated plates with one pair of opposite edges simply supported", Compos. Struct., 69, 77-87. https://doi.org/10.1016/j.compstruct.2004.05.015
- Chladni, E.F.F. (1802), Die Akustik. Breitkopf & Hartel, Leipzig.
- Euler, L. (1766), "De motu vibratorio tympanorum", Novi Commentari Acad. Petropolit, 10, 243-260.
- Green, A.E. and Naghdi, P.M. (1981), "A theory of laminated composite plate and road", Report UCB/AM-81-3. University of California, Berkeley. California.
- Hencky, H. (1947), "Uber die berucksichtigung der schubverzerrung in ebenen platen", Ingeieur Archiv, 16 72-76. https://doi.org/10.1007/BF00534518
- Hildebrand, F.B. and Reissner, E. (1949), "Thomas GB. Notes on The Foundations of The Theory of Small Displacements of Orthotropic Shells", NASA Technical Note, No: 1833.
- Hosseini-Hashemi, S., Es'haghi, M., Rokni Damavandi Taher, H. and Fadaie, M. (2010), "Exact closed-form frequency equations for thick circular plates using a third-order shear deformation theory", J. Sound Vib., 329, 3382-3396. https://doi.org/10.1016/j.jsv.2010.02.024
- Kirchhoff, G. (1850), "Uber das gleichgwich und die bewegung einer elastischen scheibe", Journal Fur Die Reine und Angewandte Mathematik, 40, 51-88.
- Kirchhoff, G. (1876), Vorlesungen Uber Mathematische Physik, BG. Teubner. Leipzig.
- Lekhnitski, S.T. (1968), Anisotropic Plates, Gordon and Breach, New York, US.
- Liew, K.M., Han, J.B. and Xiao, Z.M. (1997), "Vibration analysis of circular Mindlin plates using the differential quadrature method", J. Sound Vib., 205(5), 617-630. https://doi.org/10.1006/jsvi.1997.1035
- Lo, K.H., Christensen, R.M. and Wu, E.M. (1977), "A high-order theory of plate deformation-Part 1: Homogeneous plates", J. Appl. Mech., 44, 663-668. https://doi.org/10.1115/1.3424154
- Lo, K.H., Christensen, R.M. and Wu, E.M. (1977), "A high-order theory of plate deformation-Part 2: Laminated plates", J. Appl. Mech., 44, 669-676. https://doi.org/10.1115/1.3424155
- Mbakogu, F.C. and Pavlovic, M.N. (1998), "Closed-form fundamental-frequency estimates for polar orthotropic circular plates", Appl. Acoust., 54, 207-228. https://doi.org/10.1016/S0003-682X(97)00094-7
- Mindlin, R.D. (1951), "Influence of rotary inertia and shear on flexural motion of isotropic elastic plates", J. Appl. Mech., ASME, 18, 31-38.
- Navvier, L.M.H. (1819), Resume des Lecons de M'echanique, Ecole Polytechnique, Paris, France.
- Nyfeh, A.H. and Frank Pai, P. (2004), Linear and Nonlinear Structural Mechanics, John wiley & Sons Inc, New Jersy, US.
- Omer, C. (2008), "Free vibration analysis of symmetrically laminated composite plates with first-order shear deformation theory (FSDT) by discrete singular convolution method", Finite Elem. Anal. Des., 44, 725-731. https://doi.org/10.1016/j.finel.2008.04.001
- Omer, C. (2009), "Fundamental frequency of isotropic and orthotropic rectangular plates with linearly varying thickness by discrete singular convolution method", Appl. Math. Model., 33(26), 3825-3835. https://doi.org/10.1016/j.apm.2008.12.019
- Pagano, N.J. (1970), "Exact solution for rectangular bidirectional composite and sandwich plates", J. Compos. Mater., 4, 20-34. https://doi.org/10.1177/002199837000400102
- Pagano, N.J. and Hatfield, S.J. (1972), "Elastic behavior of multilayer bidirectional composites", AIAA J., 10, 931-933. https://doi.org/10.2514/3.50249
- Qatu, M.S. (2004), Vibration of Laminated Shells and Plates, Elsevier. Oxford. UK.
- Rao, S.S. and Prasad, A.S. (1980), "Natural frequencies of Mindlin circular plates", J. Appl. Mech., 47, 652-655. https://doi.org/10.1115/1.3153748
- Reddy, J.N. (1984), "A simple higher order theory for laminated composite plates", J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719
- Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd Edition, CRC Press, Washington D.C, US.
- Reissner, E. (1944), "On the theory of bending of elastic plates", J. Math. Phys., 23, 184-191. https://doi.org/10.1002/sapm1944231184
- Seide, P. (1975), Small Elastic Deformation of Thin Shells, Noordhoff, Leyden, The Netherlands.
- Shimpi, R.P. (2002), "Refined plate theory and its variants", AIAA J., 40, 137-146. https://doi.org/10.2514/2.1622
- Shooshtari, A. and Razavi, S. (2010), "A closed form solution for linear and nonlinear free vibrations of composite and fiber metal laminated rectangular plates", Compos. Struct., 92, 2663-2675. https://doi.org/10.1016/j.compstruct.2010.04.001
- Srinivas, S., Rao, C.J. and Rao, A.K. (1970), "An exact analysis fpr vibration of simply-supported and laminated thick rectangular plates", J. Sound. Vib., 12, 187-199. https://doi.org/10.1016/0022-460X(70)90089-1
- Srinivas, S. and Rao, A.K. (1970), "Bending, vibration and buckling of simply-supported thick orthotropic rectangular plates and laminates", Int. J. Solid. Struct., 6, 1463-1481. https://doi.org/10.1016/0020-7683(70)90076-4
- Szilard, R. (2004), Theories and Applications of Plate Analysis: Classical, Numerical and Engineering Methods, John Wiley & Sons, Inc, New Jersy, US.
- Thai, H.T. and Choi, D.H. (2014), "Finite element formulation of a refined plate theory for laminated composite plates", J. Compos Mater., 48, 3521-3538. https://doi.org/10.1177/0021998313511353
- Vinson, J.R. and Sierakowski, R.L. (1986), The Behavior of Structures Composed of Composite Materials, Nijhoff, Boston, Massachusetts.
- Viswanathan, K.K., Kyung, K.S. and Jang, L.H. (2009), "Asymmetric free vibrations of laminated annular cross-ply circular plates including the effects of shear deformation and rotary inertia: spline method", Forschung im Ingenieurwesen, 73, 205-217. https://doi.org/10.1007/s10010-009-0106-3
- Viswanathan, K.K. and Lee, S.K. (2007), "Free vibration of laminated cross-ply plates including shear deformation by spline method", Int. J. Mech. Sci., 49, 352-363. https://doi.org/10.1016/j.ijmecsci.2006.08.016
- Washizu, K. (1975), Variational Method in Elasticity and Plasticity, 2nd Edition, PERGAMON Press.
- Whitney, J.M. (1987), Structural Analysis of Laminated Anisotripic Plates, Technomic, Lancaster, Pennsylvania.
- Yang, P.C., Norris, C.H. and Stavsky, Y. (1966), "Elastic wave propagation in heterogeneous plates", Int. J. Solid. Struct., 2, 665-684. https://doi.org/10.1016/0020-7683(66)90045-X
- Zenkour, A.M. (2004), "Analytical solution for bending cross-ply laminated plates under thermo-mechanical loading", Compos Struct., 65, 367-379. https://doi.org/10.1016/j.compstruct.2003.11.012
- Zenkour, A.M. (2009), "The refined sinusoidal theory for FGM plates on elastic foundations", Int. J. Mech. Sci., 51, 869-880. https://doi.org/10.1016/j.ijmecsci.2009.09.026
Cited by
- A two-variable simplified nth-higher-order theory for free vibration behavior of laminated plates vol.182, 2017, https://doi.org/10.1016/j.compstruct.2017.09.041
- Eigenfrequencies of simply supported taper plates with cut-outs vol.63, pp.1, 2017, https://doi.org/10.12989/sem.2017.63.1.103
- Shear deformable super-convergent finite element for steel beams strengthened with glass-fiber reinforced polymer (GFRP) plate vol.46, pp.4, 2015, https://doi.org/10.1139/cjce-2018-0259