• Title/Summary/Keyword: Fire-Safety door

Search Result 96, Processing Time 0.026 seconds

Habitability evaluation considering various input parameters for main control benchboard fire in the main control room

  • Byeongjun Kim ;Jaiho Lee ;Seyoung Kim;Weon Gyu Shin
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4195-4208
    • /
    • 2022
  • In this study, operator habitability was numerically evaluated in the event of a fire at the main control bench board (MCB) in a reference main control room (MCR). It was investigated if evacuation variables including hot gas layer temperature (HGLT), heat flux (HF), and optical density (OD) at 1.8 m from the MCR floor exceed the reference evacuation criteria provided in NUREG/CR-6850. For a fire model validation, the simulation results of the reference MCR were compared with existing experimental results on the same reference MCR. In the simulation, various input parameters were applied to the MCB panel fire scenario: MCR height, peak heat release rate (HRR) of a panel, number of panels where fire propagation occurs, fire propagation time, door open/close conditions, and mechanical ventilation operation. A specialized-average HRR (SAHRR) concept was newly devised to comprehensively investigate how the various input parameters affect the operator's habitability. Peak values of the evacuation variables normalized by evacuation criteria of NUREG/CR-6850 were well-correlated as the power function of the SAHRR for the various input parameters. In addition, the evacuation time map was newly utilized to investigate how the evacuation time for different SAHRR was affected by changing the various input parameters. In the previous studies, it was found that the OD is the most dominant variable to determine the MCR evacuation time. In this study, however, the evacuation time map showed that the HF is the most dominant factor at the condition of without-mechanical ventilation for the MCR with a partially-open false ceiling, but the OD is the most dominant factor for all the other conditions. Therefore, the method using the SAHRR and the evacuation time map was very useful to effectively and comprehensively evaluate the operator habitability for the various input parameters in the event of MCB fires for the reference MCR.

A Study on the Elderly Households' Needs for Housing Modification (노인가구 특성에 따른 주거개조요구에 관한 연구)

  • Lee, Kwang-Soo;Park, Soo-Been
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2009.04a
    • /
    • pp.278-283
    • /
    • 2009
  • This study aims to figure out the old people's needs for modification of their housing to maintain an independent lifestyle despite their health status and living arrangements. The total of 438 residents take part in the questionnaire survey research through the quota sampling method grouped by age (60-64 group, 65-69 group, 70-74 group, and over 75 group), sex (male and female), and house type (apartment houses and others). The results are as follows. (1) The old people's most inspired modification needs in interior spaces are remodeling the heating controls in the living room and the bedroom, ventilation facilities and storage spaces in the kitchen, non-slip tile flooring and ventilation facilities in bathroom, an easy door-lock, non-slip tile flooring, a draft cut-off, and storage spaces in the entrance. Besides they require emergency alarm, easy door and window locks, fire and gas alarm, and furniture with easy handling. It is necessary to supply the aged with the appropriate heating controls for their sensitivity to heat, with enough storage spaces for the increased possessions, and with diverse safety systems reflected blunting of mobility and sensibility. (2) As they grow older, the aged require more remote controls and safety facilities such as emergency alarm, easy locks and furniture with distinguishable colors. Male elderly is more concerned with safety, while female elderly do with convenience due to their different time spending in the house. The elderly residents in the apartment houses require the heating controls, a draft cut-off, and storage space less than other types of houses. Thus modification of the heating controls, a draft cut-off, and storage space are regards as basic needs for the elderly residents in non-apartment houses.

  • PDF

Study on the Fire Risk Prediction Assessment due to Deterioration contact of combustible cables in Underground Common Utility Tunnels (지하공동구내 가연성케이블의 열화접촉으로 인한 화재위험성 예측평가)

  • Ko, Jaesun
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.1
    • /
    • pp.135-147
    • /
    • 2015
  • Recent underground common utility tunnels are underground facilities for jointly accommodating more than 2 kinds of air-conditioning and heating facilities, vacuum dust collector, information processing cables as well as electricity, telecommunications, waterworks, city gas, sewerage system required when citizens live their daily lives and facilities responsible for the central function of the country but it is difficult to cope with fire accidents quickly and hard to enter into common utility tunnels to extinguish a fire due to toxic gases and smoke generated when various cables are burnt. Thus, in the event of a fire, not only the nerve center of the country is paralyzed such as significant property damage and loss of communication etc. but citizen inconveniences are caused. Therefore, noticing that most fires break out by a short circuit due to electrical works and degradation contact due to combustible cables as the main causes of fires in domestic and foreign common utility tunnels fire cases that have occurred so far, the purpose of this paper is to scientifically analyze the behavior of a fire by producing the model of actual common utility tunnels and reproducing the fire. A fire experiment was conducted in a state that line type fixed temperature detector, fire door, connection deluge set and ventilation equipment are installed in underground common utility tunnels and transmission power distribution cables are coated with fire proof paints in a certain section and heating pipes are fire proof covered. As a result, in the case of Type II, the maximum temperature was measured as $932^{\circ}C$ and line type fixed temperature detector displayed the fire location exactly in the receiver at a constant temperature. And transmission power distribution cables painted with fire proof paints in a certain section, the case of Type III, were found not to be fire resistant and fire proof covered heating pipes to be fire resistant for about 30 minutes. Also, fire simulation was carried out by entering fire load during a real fire test and as a result, the maximum temperature is $943^{\circ}C$, almost identical with $932^{\circ}C$ during a real fire test. Therefore, it is considered that fire behaviour can be predicted by conducting fire simulation only with common utility tunnels fire load and result values of heat release rate, height of the smoke layer, concentration of O2, CO, CO2 etc. obtained by simulation are determined to be applied as the values during a real fire experiment. In the future, it is expected that more reliable information on domestic underground common utility tunnels fire accidents can be provided and it will contribute to construction and maintenance repair effectively and systematically by analyzing and accumulating experimental data on domestic underground common utility tunnels fire accidents built in this study and fire cases continuously every year and complementing laws and regulations and administration manuals etc.

Installation Standards of Urban Deep Road Tunnel Fire Safety Facilities (도심부 대심도 터널의 방재시설 설치 기준에 관한 연구(부산 승학터널 사례를 중심으로))

  • Lee, Soobeom;Kim, JeongHyun;Kim, Jungsik;Kim, Dohoon;Lim, Joonbum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.6
    • /
    • pp.727-736
    • /
    • 2021
  • Road tunnel lengths are increasing. Some 1,300 tunnels with 1,102 km in length had been increased till 2019 from 2010. There are 64 tunnels over 3,000 m in length, with their total length adding up to 276.7 km. Safety facilities in the event of a tunnel fire are critical so as to prevent large-scale casualties. Standards for installing disaster prevention facilities are being proposed based on the guidelines of the Ministry of Land, Infrastructure and Transport, but they may be limited to deep underground tunnels. This study was undertaken to provide guidelines for the spacing of evacuation connection passages and the widths of evacuation connection doors. Evacuation with various spacing and widths was simulated in regards to evacuation time, which is the measure of safety, using the evacuation analysis simulation software EXODUS Ver.6.3 and the fire/smoke analysis software SMARTFIRE Ver.4.1. Evacuation connection gates with widths of 0.9 m and 1.2 m, and spacings of 150 m to 250 m, were set to every 20 m. In addition, longitudinal slopes of 6 % and 0 % were considered. It was determined to be safe when the evacuation completion time was shorter than the delay diffusion time. According to the simulation results, all occupants could complete evacuation before smoke spread regardless of the width of the evacuation connection door when the longitudinal slope was 6 % and the interval of evacuation connection passage was 150 m. When the evacuation connection passage spacing was 200 m and the evacuation connection gate width was 1.2 m, all occupants could evacuate when the longitudinal slope was 0 %. Due to difference in evacuation speed according to the longitudinal slope, the evacuation time with a 6 % slope was 114 seconds shorter (with the 190 m connection passage) than with a 0 % slope. A shorter spacing of evacuation connection passages may reduce the evacuation time, but this is difficult to implement in practice because of economic and structural limitations. If the width of the evacuation junction is 1.2 m, occupants could evacuate faster than with a 0.9 m width. When the width of a connection door is 1.2 m with appropriate connection passage spacing, it might provide a means to increase economic efficiency and resolve structural limitations while securing evacuation safety.

The Evaluation of the Village Community Center in Aspects of Universal Design Principles - Focused on 25 Village Community Centers in Hwasoon Province - (농촌 마을회관의 유니버설디자인 적용성 평가 - 전남 화순군 25개 마을회관을 중심으로 -)

  • Moon, In-Young;Kim, Mi-Hee
    • Korean Institute of Interior Design Journal
    • /
    • v.23 no.1
    • /
    • pp.162-171
    • /
    • 2014
  • This study aimed to evaluate how universal design principles are embodied in the village community center. It will provide preliminary data on constructing a physical space of village community center as small community space in agricultural districts. To achieving the purpose in this study, the research conducted inspection using checklist to 25 village community centers at Hwasoon, Jeonnam province. The conclusion of this study is as follows: Living room and kitchen/dining room by supportive design urgently need installation of Western Style furniture and solutions of stair gap by accessible design, and also the evaluation is unsuited on a fire-gas alarm system and prevention of electric shook system on safety-oriented design. Entrance evaluated in principle for insufficient on safety handle by supportive design and spare chair by adaptable design, and also it unsuited on the solutions of door sill by accessible design and non-skid by safety-oriented design. Bathroom is insufficient lever handle and safety grip by supportive design, sink isn't suitable by adaptable design. Outdoor space information legislation staircase ramp installation and horizontal installation of the staircase was not built.

The Floor Layout Plan of Classrooms for Securing Evacuation Stability in School (학교의 피난 안전성 확보를 위한 층별 학급 배치방안)

  • Lee, Soon Beom;Lee, Jai Young;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.3
    • /
    • pp.509-515
    • /
    • 2021
  • This study analyzes the efficient floor layout plan of classrooms for securing evacuation stability in school in case of fire by using the Pathfinder simulation program. Efficient evacuation methods and safety were evaluated by analyzing REST (Required Safe Egress Time) according to the allocation of personnel by floor targeting a high school 5-story building equipped with a ramp and stairs. The current status of personnel assignments exceeded the Required Safe Egress Time(RSET), resulting in a problem with evacuation safety. When students were placed on the 3rd, 4th, and 5th floors, the result was that the time exceeded RSET the most. When students were placed on the 1st, 2nd, and 3rd floors, the result was that they completed evacuation in the shortest time, less than RSET. In the current state, when evacuation was guided by designating an evacuation exit depending on the location, the result of shortening RSET was obtained. As a result, it is effective to put the students on the lower floors when placing students in high-rise school buildings in terms of evacuation safety, and in the preliminary training, it is required to designate evacuation exits so that they can use the nearest exit for each location in case of a fire. As a future research project, additional research is needed on the RSET when a fire occurs in a specific location according to whether the automatic fire door at that location is opened or closed.

The Possibility and Limit of Risk Management through Technological Fix: A Case Study into the Platform Screen Door (PSD) (기술적 해결을 통한 위험관리의 가능성과 한계: 지하철 스크린도어를 중심으로)

  • Kang, Yun-Jae
    • Journal of Science and Technology Studies
    • /
    • v.10 no.2
    • /
    • pp.77-105
    • /
    • 2010
  • This essay aims to look into the possibility and limit of a technological fix with the PSD (platform screen door), which was proposed as the solution of subway risk problems. Subway risk problems may be classified into five categories-on-rail accidents, in-station accidents, platform accidents, spatial risks in underground, and risks due to a crime or terror-, and the platform accidents, which happens at the interface between the rail and the station, is the most serious and prominent. The PSD is considered as an effective technical means to prevent platform accidents. However, there remains a possibility of aggravating unexpected and invisible risks. When a fire breaks out in platforms, especially at exchange stations during the rush hour, the PSD can become a "wall of outcrying", since it may act as the "safety shutter" which killed many people in the 2003 Daegu subway disaster. This is why we need to look into the limit of a technological fix with the PSD.

  • PDF

A Study on On-site Discharge Testing for Carbon Dioxide Fire Extinguishing Systems (이산화탄소 소화설비 현장 방출시험 방법론에 관한 고찰)

  • Park, Jun-Hyun;Kang, Tae-Seok;Kim, Jae-Hwan;Kim, Wee-Kyong
    • Fire Science and Engineering
    • /
    • v.29 no.4
    • /
    • pp.26-32
    • /
    • 2015
  • Carbon dioxide principally extinguishes fires by smothering, but an acceptable amount of extinguishing agent is needed. To assure the performance of carbon dioxide systems in Korea, computer programs certified by NEMA are being applied in system design. But the design errors can occur because the geometry of a model test facility is not the same as that of the actual fire area. Since the discharge rate tends to vary considerably with the flow pattern in a pipe, an on-site discharge test is necessary to ensure the performance of the system, especially with low pressure carbon dioxide. Technical standards for carbon dioxide systems do not give detailed guidelines for discharge tests at present. Based on comparative analysis of standards and practical tests, this paper suggests a methodology for on-site discharge tests.

A study on the Means of Egress Codes for Interior Architecture in the United States - Focused on Evacuation Elements in the Interior Architectural Design - (미국의 실내건축 피난 규정에 관한 연구 - 실내건축계획에 있어 피난 요소를 중심으로 -)

  • Kim, Young-Sung;Cho, Sung-O
    • Korean Institute of Interior Design Journal
    • /
    • v.27 no.3
    • /
    • pp.24-32
    • /
    • 2018
  • The law reflects the situation of the times, understands the society, and shows the will of the state and the community. The Means of Egress should be maintained from design to construction, supervision, as well as use, in order to protect the lives and property of the residents as well as the safe use of the facilities. However, Interior Architects are think that evacuation and safety regulations are complex elements that change frequently and may inhibit the idea of design. The purpose of this study is to propose a design method for the use of safe facilities in the interior architectural design on the evacuation regulations affecting the actual design by the IBC(the International Building Code) and NFPA(National Fire Protection Association) LSC (Life Safety Code). The research method is to investigate and analyze the provisions related to the evacuation of interior architecture in the US and to understand the current regulations and the evacuation regulations. We suggest to design method to the details of the hallway, corridors, aisle accessway, door way, exit path, In particular, the design of furniture, tables and chairs layout that could be obstacles to evacuation situations is presented.

Analysis on the Falling Risk of Building Electric Shutter and Reduction Measures (건축물 전동셔터 추락 리스크 분석 및 저감 방안)

  • Jung, Young-Min;Bang, Hong-Soon;Kim, Ok-Kyue
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.295-296
    • /
    • 2021
  • With the recent diversification and complication of buildings, the functions of building are also developing. As much as the development of buildings, the machine or equipment used for them is also developing. Thus, all sorts of domestic/foreign industrial facilities and fire stations in the whole nation are using the electric shutter that could meet the insulation just like the exterior wall of general buildings, for bringing-in/storage and crime prevention/fire prevention. Currently, various types of electric shutters are used. Such wrong operation and poor management are causing many panel-falling accidents. This study researched the reduction of electric shutter panel-falling risk by reviewing the domestic/foreign laws and standards, and researching the new safety equipment. First, the causes for falling and accident types were drawn by analyzing the cases of electric shutter accidents. After that, a checklist as the measures for reducing the falling of electric shutter in building was suggested by analyzing the items for the inspection of electric shutter.

  • PDF