DOI QR코드

DOI QR Code

Installation Standards of Urban Deep Road Tunnel Fire Safety Facilities

도심부 대심도 터널의 방재시설 설치 기준에 관한 연구(부산 승학터널 사례를 중심으로)

  • 이수범 (서울시립대학교 교통공학과) ;
  • 김정현 (한국철도기술연구원 철도정책연구실) ;
  • 김정식 (서울특별시청 도로계획과) ;
  • 김도훈 (서울시립대학교 교통공학과) ;
  • 임준범 (한국교통안전공단 교통안전연구처)
  • Received : 2021.09.27
  • Accepted : 2021.10.29
  • Published : 2021.12.01

Abstract

Road tunnel lengths are increasing. Some 1,300 tunnels with 1,102 km in length had been increased till 2019 from 2010. There are 64 tunnels over 3,000 m in length, with their total length adding up to 276.7 km. Safety facilities in the event of a tunnel fire are critical so as to prevent large-scale casualties. Standards for installing disaster prevention facilities are being proposed based on the guidelines of the Ministry of Land, Infrastructure and Transport, but they may be limited to deep underground tunnels. This study was undertaken to provide guidelines for the spacing of evacuation connection passages and the widths of evacuation connection doors. Evacuation with various spacing and widths was simulated in regards to evacuation time, which is the measure of safety, using the evacuation analysis simulation software EXODUS Ver.6.3 and the fire/smoke analysis software SMARTFIRE Ver.4.1. Evacuation connection gates with widths of 0.9 m and 1.2 m, and spacings of 150 m to 250 m, were set to every 20 m. In addition, longitudinal slopes of 6 % and 0 % were considered. It was determined to be safe when the evacuation completion time was shorter than the delay diffusion time. According to the simulation results, all occupants could complete evacuation before smoke spread regardless of the width of the evacuation connection door when the longitudinal slope was 6 % and the interval of evacuation connection passage was 150 m. When the evacuation connection passage spacing was 200 m and the evacuation connection gate width was 1.2 m, all occupants could evacuate when the longitudinal slope was 0 %. Due to difference in evacuation speed according to the longitudinal slope, the evacuation time with a 6 % slope was 114 seconds shorter (with the 190 m connection passage) than with a 0 % slope. A shorter spacing of evacuation connection passages may reduce the evacuation time, but this is difficult to implement in practice because of economic and structural limitations. If the width of the evacuation junction is 1.2 m, occupants could evacuate faster than with a 0.9 m width. When the width of a connection door is 1.2 m with appropriate connection passage spacing, it might provide a means to increase economic efficiency and resolve structural limitations while securing evacuation safety.

국내 도로터널은 2010년과 2019년과 비교시 1,300개소, 1,102 km 증가하고 있으며, 연평균 7.6 %씩 증가하고 있는 수치이다. 또한, 도로터널 연장이 3,000 m이상 되는 장대터널도 64개소, 276.7 km에 달하고 있다. 도로터널은 폐쇄적인 공간적 특성으로 인해 화재사고 발생시 대형 인명피해로 연결될 가능성이 높으므로 안전시설 설치를 고려해야 한다. 현재 국토교통부의 지침을 통하여 방재시설 설치 기준이 제시되고 있으나, 대심도의 특성을 반영하는데 한계가 있는 것으로 사료된다. 본 연구에서는 다양한 피난연결통로의 설치간격과 피난연결문의 폭을 적용한 시뮬레이션을 통하여, 적정한 기준값을 도출하고자 하였다. 안전성의 척도가 되는 피난시간 산정은 피난 분석 시뮬레이션 소프트웨어 building EXODUS Ver.6.3과 화재/연기 분석 소프트웨어 SMARTFIRE Ver.4.1을 활용하였다. 시나리오는 피난연결문 폭 0.9 m, 1.2 m 두 종류와 피난연결통로간격 150~250 m를 20 m간격으로 설정하였다. 또한, 대심도 특성인 경사도를 고려하기 위해서 종단경사 6 %와 0 %를 각각 적용하였다. 피난완료시간이 연기확산시간보다 짧은 경우 "안전"으로 판단하였다. 시뮬레이션 결과 종단경사 6 %인 경우, 피난연결통로 간격이 150 m인 경우에는 피난연결문 너비에 상관없이 연기확산 전에 모든 재실자들이 피난을 완료할 수 있었다. 종단경사 0 %인 경우, 피난연결통로 간격이 200 m이고 피난연결문의 폭이 1.2 m인 경우 모든 재실자가 피난을 완료할 수 있었다. 종단경사에 따른 피난 속도의 차이로 0 % 경사에서는 6 %에 비해 대피시간이 114초(190 m연결통로 기준) 단축되는 것으로 나타났다. 피난연결통로 간격이 짧아질 수록 빠르게 대피할 수 있으나 경제적, 구조적인 문제로 연결통로를 촘촘하게 배치하기는 어렵다. 피난연결문의 폭이 1.2 m로 늘어난다면 0.9 m 폭인 경우와 비교하여 재실자들이 더 빠르게 대피가 가능할 것이다. 연결통로간격을 적정하게 유지하면서 1.2 m폭의 연결문을 적용한다면, 피난 안전을 확보하면서 경제성을 높이고 구조적인 안전까지 해결하는 방법이 될 것이다.

Keywords

Acknowledgement

이 논문은 2020년도 서울시립대학교 교내학술연구비에 의하여 지원되었음.

References

  1. Bae, Y. H., Lee, S. H., Choi, J. H. and Hong, W. H. (2014). "Analysis of crowd walking speed according to smoke during undergroun space evacuation," 2014 Spring Conference, Architectural Institute of Korea, pp. 215-216 (in Korean).
  2. Gwynne, S., Galea, E. R., Owen, M. and Lawrence, P. J. (1998). "Investigation of the aspects of occupant behavior required for evacuation modelling." Journal of Applied Fire Science, Vol. 8, No. 1, pp. 19-59.
  3. Hao, S. Q. and Yuan, Y. (2009). "Fire evacuation of underground tunnel based building EXODUS." 2009 World Congress on Computer Science and Information Engineering, San Francisco, USA., Vol. 7, pp. 612-615.
  4. Jin, K. (2019). A study on the improvements of risk index through the analysis of large road tunnel fire, M.S. Thesis, Yonsei University, Seoul, Korea (in Korean).
  5. KOROAD (2020). Traffic accident analysis system, Available at: taas.koroad.or.kr (Accessed: April 1, 2020).
  6. Lee, S. H., Goo, S. H., Chun, Y. W. and Park, Y. J. (2015). "The spatial location analysis of disaster evacuation shelter for considering resistance of road slope and difference of walking speed by age-case study of seoul." Journal of Korean Society for Geospatial Information Science, KSIS, Vol. 23, No. 2, pp. 69-77 (in Korean).
  7. Ministry of Land, Infrastructure and Transport (MOLIT) (2019a). Road tunnel disaster prevention facility insltallation and management guidelines (in Korean).
  8. Ministry of Land, Infrastructure and Transport (MOLIT) (2019b). Road bridge and tunnel status information system, Available at: https://bti.kict.re.kr/bti/ (Accessed: April 1, 2020).
  9. Porzycki, J., Schmidt-Polonczyk, N. and Was, J. (2018). "Pedestrian behavior during evacuation from road tunnel in smoke condition - Empirical results." PLoS ONE, Vol. 13, No. 8, pp. 1-20.
  10. Ryu, J. O. and Choi, P. G. (2018). "A study on the development and applicability of fire risk assessment method for small road ttunnels passing only small cars." Journal of Korean Tunnelling and Underground Space Association, Vol. 20, No. 6, pp. 917-930 (in Korean). https://doi.org/10.9711/KTAJ.2018.20.6.917
  11. Seo, D. G., Hwang, E. K. and Kwon, Y. J. (2010). "An investigation study on the walking speed of crowd for egress safety of PBD." Journal of the Architectural Institute of Korea, Vol. 26 No. 12, pp. 99-106 (in Korean).
  12. Seo, I. K., Park, J. J., Ahn, B. H. and Lee, J. Y. (2012). "A study on the traffic accident characteristics analysis in expressway longitudinal tunnel using a logit model." KSCE Journal of Civil Engineering, KSCE, Vol. 32, No. 6D, pp. 549-556 (in Korean).
  13. Seoul Metropolitan Government (2019). Seoul metropolitan road construction and management plan final report (2021~2030) (in Korean).
  14. Yoo, Y. H., Yoon, C. H., Yoon, S. W. and Kim, J. (2005). "Experimental study on the interval of emergency exits in long traffic tunnels, tunnel and underground space." Korean Society for Rock Mechanics and Rock Engineering, KSRM, Vol. 15, No. 1, pp. 61-70 (in Korean).