• Title/Summary/Keyword: Fire Resistance Test

Search Result 390, Processing Time 0.028 seconds

The Spalling Properties of High-Performance Concrete with the Kinds of Aggregates and Polypropylene Fiber Contents (골재종류 및 폴리프로필렌 섬유 혼입률 변화에 따른 고성능콘리트의 폭열 성상)

  • 이병렬;황인성;윤기원;양성환;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.76-79
    • /
    • 1999
  • The purpose of this study is to investigate the spalling properties of high-performance concrete with the kinds of aggregates and polypropylene(below PP) fiber contents. According to the experimental results, concrete contained no PP fiber take place in the form of the surface spalling and the failure of specimens after fire test regardless of the kinds of aggregates. Concrete contained more than 0.05% of PP fiber with the kinds of aggregates does not take place the spalling. Concrete using basalt has better performance in spalling resistance that concrete using granite and limestone. It is found that residual compressive strength has 50~60% of their original strength. Although specimens after exposed at high temperature are cured at water for 28days, they do not recover their original strength.

  • PDF

An Experimental Study about Fire Resistance effect on steel fiber of the 90MPa column with Fiber-Cocktail (Fiber-cocktail을 혼입한 90MPa 강도 기둥의 강섬유 영향인자에 관한 실험적 연구)

  • Cho, Kyung-Suk;Kim, Heung-Ryul;Kim, Hyung-Jun;Park, Kyung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.419-420
    • /
    • 2010
  • High strength concrete(HSC) is made with Fiber-cocktail to control the spalling of HSC. In this paper, the column is made with PP fiber of $1.5kg/m^3$ and steel fiber of 20, 30, $40kg/m^3$, and the test are observed the temperature of reinforced bars and concrete. The results that increasing of temperature is delay as increase of steel fiber's volume.

  • PDF

Development of 3D Printing Cement Based Composite Materials Applying for Exterior Finishing Material (건물 외장재 적용을 위한 3D 프린팅 시멘트 베이스 결합재 개발)

  • Shin, Hyeon-Uk;Song, Hun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.83-84
    • /
    • 2018
  • 3D printing technology can be applied to various industries, and is trapped by major technologies that change existing manufacturing processes. 3D printing materials must satisfy designability, economy and productivity, and building materials are required to have strength and economy secured technology. 3D printing technology of construction field can be divided into structural materials and internal and external materials, and is mainly done by extruding and adapting. Particularly when it is applied as an exterior materials, it is mainly applied to an unstructured exterior materials and high accuracy is required. The exterior materials can be used as a cement composite materials, it is suitable also for a lamination type, and the role of a cement base bonding material is important. In this research, we developed a cementitious base binder applicable as a 3D printing exterior materials, confirmed density and strength characteristics for application as an exterior materials, a flame retardancy test for improving the fire resistance of buildings and confirmed its possibility.

  • PDF

Manufacture of Water-borne Biopolyurethane Film Based on Caster Oil and Tri Methylol Propane for Leather Coationg

  • Lee Joo-Youb
    • Journal of the Korean Applied Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.924-931
    • /
    • 2022
  • Undenatured castor oil and trimethylolpropane (TMP) were used to obtain bio-based water-based polyurethane. Isophorone diisocyanate (IPDI) was incorporated into the formulation to obtain a transparent film, and ethylenediamine (EDA) was used for chain extension. In order to measure the change in physical properties according to the contents of castor oil and TMP, each tensile strength, elongation, and abrasion resistance test was conducted. As the contents of castor oil and TMP increased, the tensile strength increased, the elongation decreased, and the surface hardened strongly as the respective contents increased.

A Study on the Structural Performance of Post Tensioned Concrete Beam and Slab Subjected to High Temperature (고온을 받은 포스트텐션 콘크리트 보와 슬래브의 구조성능 연구)

  • Choi, Kwang-Ho;Lee, Joong-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.2
    • /
    • pp.217-223
    • /
    • 2017
  • This research was planned to evaluate the structural performance of post tensioned(PT) concrete member subjected to fire. Prime objective was to suggest some techniques to evaluate the performance of post tensioned concrete beam and slab exposed to high temperature through experiment. To accomplish this objective, the following two scopes have been proceeded to verify the strength reducing ratio of strands and find out the difference of resisting force at the PT concrete members exposed to high temperature through the fire test. The properties of prestressing steel(tendon) in PT concrete beam and slab under variable temperatures were reviewed. The test of this study was shown that stress relaxation occurred at high temperature, and some restoration of tensional force appeared as it got cooling down. The residual tension of the post tensioned beams at 4 hours after reaching the target temperature were 70% at $400^{\circ}C$, 10% at $600^{\circ}C$ and 2% at $800^{\circ}C$. The post tensioned slabs were 94% at $400^{\circ}C$, 84.5% at $600^{\circ}C$ and 62% at $800^{\circ}C$. The reason why the residual tension loss of the post tensioned slab was relatively small was considered to be that the slab was exposed just one side to high temperature and the strength of the strand was restored larger than that of beam. Also, it was confirmed that the post tensioned member inevitably experienced the loss of strength by fire damage, and restoration design of the member should be required to compensate for the value as much as lost strength.

Enhanced Flame Retardancy of Cotton Fabric by Functionalized Graphene Oxide and Ammonium Polyphosphate (기능성화 산화 그래핀과 폴리인산암모늄을 이용한 직물 난연성 향상)

  • Ka, Dongwon;Jang, Seongon;Jung, Hyunsook;Jin, Youngho
    • Composites Research
    • /
    • v.33 no.4
    • /
    • pp.177-184
    • /
    • 2020
  • Flame retardant(FR) clothes prohibit additional fire diffusion and make the personnel do their tasks without a hitch in a flammable environment. The existing FR clothes, however, are heavy and give high thermal fatigue. Therefore, it is strongly demanded to develop a light, convenient, and eco-friendly clothes. Recently, many works have been reported to make FR fabrics with phosphorus compounds, but their performance could not satisfy the specified criteria in appraisal standards of domestic and American FR clothes or combat uniforms. In this paper, two kinds of phosphorus compounds were applied to cotton fabric. Graphene oxide functionalized with a phosphorus-rich deep eutectic solvent and ammonium polyphosphate were coated on cotton fabric by eco-friendly padding procedure. The coated fabrics were analyzed with thermogravimetric analysis, vertical flame resistance test(ASTM D6413), cone calorimeter test(ISO 5660-1), and method of test for limited flame spread(ISO 15025). It was revealed that the as-made cotton with those two materials simultaneously had better flame resistance than the cottons with each one. Furthermore, an additional coating for hydrophobicity on the FR cotton was tried for better washing fastness.

Spalling Properties of High Strength Concrete Made with Various Aspect Ratios and Fiber Contents of Nylon Fiber (나일론 섬유의 형상비 및 혼입률 변화에 따른 고강도 콘크리트의 폭렬특성)

  • Song, Yong-Won;Heo, Young-Sun;Lee, Seong-Yeun;Hann, Chang-Pyung;Yang, Seong-Hwan;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.55-58
    • /
    • 2007
  • This study investigates the spatting properties of high strength concrete, $60\sim80MPa$ class, designed with diverse aspect ratios and fiber content of nylon(NY). Test showed that increase of fiber content and aspect ratio in concrete decreased the fluidity of fresh concrete, especially for 1580 and 3000 aspect ratio of fiber. As for the compressive and tensile strength, adding NY fiber did not significantly affect the values In the range of high strength. After completing the fire test, the specimens containing both 750 and 1000 aspect ratios of fiber protected the spatting occurrence even in 0.05vol.% of fiber content. This specimens indicated the residual compressive strength ratio at 37%, showing the most favorable value among other specimens. Therefore, it is demonstrated that to protect the spalling in high strength concrete considering the effective fluidity, strength and economic efficiency altogether, adding 0.05vol.% of NY fiber with 750 aspect ratio Is beneficial.

  • PDF

Spalling Properties of High Performance Concrete Designed with the Various Blaine of Cement, Mineral Admixture Types and Fiber Contents (시멘트 입도, 혼화재 종류 및 PP섬유 혼입률 변화에 따른 고성능 콘크리트의 폭렬특성)

  • Song, Yong-Won;Shin, Jae-Kyung;Lee, Jae-Sam;Hann, Chang-Pyung;Yang, Seong-Hwan;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.103-106
    • /
    • 2006
  • This study investigates spalling properties of 60MPa class, high performance concrete, made with the various influential parameters, such as, blaine of cement, mineral admixture and polypropylene(PP) fiber contents. Totally 21 parameters of ${\phi}100{\times}200mm$ in size was fabricated; three specimens for variance in blaine of cement, 4 specimens for combination of mineral admixture type, along with 0.05, 0.1, 0.15% of fiber adding ratio. After that, one hour unloading fire test was conducted, and then spalling appearance and spalling degree of specimens was examined. Test showed that a specimen made with high blaine of cement(H) improved early strength but exhibited similar value to a specimen made with low blaine(L) at the age of 28 days, thus indicating comparable spalling appearance. In conclusion, spalling easily occur in higher strength and smaller particle shape of cement and mineral admixture.

  • PDF

Experimental Study on the Fire Resistant Capacity of Waste Paper-Mixed Concrete (종이 혼합 콘크리트의 내화특성 실험연구)

  • Cho, Byung-Heon;Son, Ki-Sang
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.4
    • /
    • pp.83-90
    • /
    • 2007
  • This study is to find out if it can be recycled for making better concrete. Therefore, waste paper as of newspaper and newspaper are added into concrete to see if waste paper-mixing concrete can have any particular characteristic. The test result of paper concrete was compared and analyzed through four kinds of tests such as compressive strength as of a fundamental one of concrete resistant capacity against heat. $200^{\circ}C,\;400^{\circ}C\;and\;600^{\circ}C$ heated concrete were compressively tested in order to find out concrete strength resistant to high temperature. heat capacity was also tested, based on the expectancy of its low conductivity. finally flexural strength test using four reinforced concrete beams with size of $20cm{\times}30cm{\times}160cm$ was made. And concrete property exposed to the temperature showed that there are almost not effect for the strength up to $400^{\circ}C$, but it was decreased down to 50% of the original condition. volume of paper mixed with concrete without relation to paper kinds of new and waste one.

The test methods of Lifting performance and Environmental resistance tests using power assist device for a fireman to rescue humans (인명구조용 소방대원 근력지원장치의 양중성능 및 내환경 시험 방법)

  • Lee, Minsu;Park, Chan;Lee, Seonmin;Lee, Dongeun
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.3
    • /
    • pp.358-365
    • /
    • 2017
  • As the damage caused by disasters increases rapidly around the world, it is necessary to develop the technology for equipment to reduce human injury. Therefore in the support of fire safety and 119 rescue and rescue technology research and development project, in the "Development of a power assist device for a fireman to rescue humans(2015 ~ 2018)" for life saving restoration, we are developing equipment that satisfies the lifting performance considering the disaster environment and the disaster response scenario(Amount of load over 100 kg, height of over 1 m, height over middle 60 cm, speed over 0.2 m/s). In this study, we propose a lifting performance and environmental test method to evaluate the usefulness of the power-assisted device and analyze and verify detailed specifications of the device through dynamics analysis of the lifting performance test. This study suggests that the proposed test method can be applied practically to evaluate whether a stable performance of a power-assisted device is achieved.