Browse > Article
http://dx.doi.org/10.7234/composres.2020.33.4.177

Enhanced Flame Retardancy of Cotton Fabric by Functionalized Graphene Oxide and Ammonium Polyphosphate  

Ka, Dongwon (Agency for Defense Development)
Jang, Seongon (Agency for Defense Development)
Jung, Hyunsook (Agency for Defense Development)
Jin, Youngho (Agency for Defense Development)
Publication Information
Composites Research / v.33, no.4, 2020 , pp. 177-184 More about this Journal
Abstract
Flame retardant(FR) clothes prohibit additional fire diffusion and make the personnel do their tasks without a hitch in a flammable environment. The existing FR clothes, however, are heavy and give high thermal fatigue. Therefore, it is strongly demanded to develop a light, convenient, and eco-friendly clothes. Recently, many works have been reported to make FR fabrics with phosphorus compounds, but their performance could not satisfy the specified criteria in appraisal standards of domestic and American FR clothes or combat uniforms. In this paper, two kinds of phosphorus compounds were applied to cotton fabric. Graphene oxide functionalized with a phosphorus-rich deep eutectic solvent and ammonium polyphosphate were coated on cotton fabric by eco-friendly padding procedure. The coated fabrics were analyzed with thermogravimetric analysis, vertical flame resistance test(ASTM D6413), cone calorimeter test(ISO 5660-1), and method of test for limited flame spread(ISO 15025). It was revealed that the as-made cotton with those two materials simultaneously had better flame resistance than the cottons with each one. Furthermore, an additional coating for hydrophobicity on the FR cotton was tried for better washing fastness.
Keywords
Graphene oxide; Ammonium polyphosphate; Flame retardant fabric; Vertical flame resistance test; Cone calorimeter;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Chen, W., Liu, P., Min, L., Zhou, Y., Liu, Y., Wang, Q., and Duan, W., "Non-covalently Functionalized Graphene Oxide-Based Coating to Enhanced Thermal Stability and Flame Retardancy of PVA Film," Nano-Micro Letters, Vol. 10, No. 39, 2018.
2 Lee, W., Yoon, S.S., Um, M.-K., and Lee, J.U., "Preparation of Amine-Functionalized Graphene Fiber and Its Application," Composites Research, Vol. 28, No. 5, 2015, pp. 265-269.   DOI
3 Kim, H., Kim, D.W., Vasagar, V., Ha, H., Nazarenko, S., and Ellison, C.J., "Polydopaminie-Graphene Oxide Flame Retardant Nanocoatings Applied via an Aqueous Liquid Crystalline Scaffold," Advanced Functional Materials, Vol. 28, No. 39, 2018, 1803172.   DOI
4 Sang, B., Li, Z.-W., Li, X.-H., and Zhang, Z.-J., "Graphene - Based Flame Retardants: A Review," Journal of Materials Science, Vol. 51, No. 18, 2016, pp. 8271-8295.   DOI
5 Liu, H., Du, Y., Yang, G., Zhu, G., Gao, Y., and Ding, W., "Flame Retardance of Modified Graphene to Pure Cotton Fabric," Journal of Fire Sciences, Vol. 36, No. 2, 2018, pp. 111-128.   DOI
6 Kausar, A., Anwar, Z., and Muhammad, B., "Overview of Nonflammability Characteristics of Graphene and Graphene Oxide-Based Polymeric Composite and Essential Flame Retardancy Techniques," Polymer-plastics Technology and Engineering, Vol. 56, No. 5, 2017, pp. 488-505.   DOI
7 Jing, J., Zhang, Y., Tang, X., Li, X., Peng, M., and Fang, Z., "Combination of a Bio-Based Phosphonate and Modified Graphene Oxide Toward Superior Flame Retardant Polylactic Acid," RSC Advances, Vol. 8, 2018, pp. 4304-4313.   DOI
8 Edenharter, A., Feicht, P., Diar-Bakerly, B., and Beyer, G., "Superior Flame Retardant by Combining High Aspect Ratio Layered Double Hydroxide and Graphene Oxide," Polymer, Vol. 91, 2016, pp. 41-49.   DOI
9 Wang, X., Romero, M.Q., Zhang, X.-Q., Wang, R., and Wang, D.-Y., "Intumescent Multilayer Hybrid Coating for Flame Retardant Cotton Fabrics Based on Layer-by-Layer Assembly and Sol-Gel Process," RSC Advances, Vol. 5, No. 14, 2015, pp. 10647-10655.   DOI
10 Li, Y.-C., Mannen, S., Morgan, A.B., Chang, S., Yang, Y.-H., Condon, B., and Grunlan., J.C., "Intumescent All-Polymer Multilayer Nanocoating Capable of Extinguishing Flame on Fabric," Advanced Materials, Vol. 23, No. 34, 2011, pp. 3926-3931.   DOI
11 Jang, W.J., Chung, I.J., Kim, J.W., Seo, S.M., Park, Y.T., and Choi, K.W., "Improving Fire Resistance of Cotton Fabric through Layer-by-Layer Assembled Graphene Multilayer Nanocoating," Journal of the Korean Physical Society, Vol. 72, No. 9, 2018, pp. 1052-1057.   DOI
12 Choi, K.W., Seo, S.M., Kwon, H.G., Kim, D.S., and Park, Y.T., "Fire Protection Behavior of Layer-by-Layer Assembled Starch-Clay Multilayers on Cotton Fabric," Journal of Materials Science, Vol. 53, No. 16, 2018, pp. 11433-11443.   DOI
13 Huang, G., Yang, J., Gao, J., and Wang, X., "Thin Films of Intumescent Flame Retardant-Polyacrylamide and Exfoliated Graphene Oxide Fabricated via Layer-by-Layer Assembly for Improving Flame Retardant Properties of Cotton Fabric," Industrial & Engineering Chemistry Research, Vol. 51, No. 38, 2012, pp. 12355-12366.   DOI
14 Lin, D.L., Zeng, X., Li, H., Lai, X., and Wu, T., "One-pot Fabrication of Superhydrophobic and Flame-Retardant Coatings on Cotton Fabrics via Sol-Gel Reaction," Journal of Colloid and Interface Science, Vol. 533, 2019, pp. 198-206.   DOI
15 Mun, S.Y., Lee, S.Y., and Lim, H.M., "Flame Retardant Properties of Basalt Fiber Reinforced Epoxy Composite with Inorganic Fillers," Composites Research, Vol. 32, No. 6, 2019, pp. 368-374.
16 Lee, D.-W., Park, B.-J., and Song, J.-I., "A Study on Fire Resistance of Abaca/Vinyl-ester Composites," Composites Research, Vol. 30, No. 1, 2017, pp. 59-64.   DOI
17 Lee, D.-W., Park, S.-B., and Song, J.-I., "Study on Mechanical Properties and Flame Retardancy of Polypropylene Based Self-Reinforced Composites," Composites Research, Vol. 30, No. 3, 2017, pp. 223-228.   DOI
18 Liu, Y., Gao, Y., Wang, Q., and Lin, W., "The Synergistic Effect of Layered Double Hydroxides with Other Flame Retardant Additives for Polymer Nanocomposites: A Critical Review," Dalton Transactions, Vol. 47, No. 42, 2018, pp. 14827-14840.   DOI
19 Yao, W., Wang, H., Guan, D., Fu, T., Zhang, T., and Dou, Y., "The Effect of Soluble Ammonium Polyphosphate on the Properties of Water Blown Semirigid Polyurethane Foams," Advances in Materials Science and Engineering, Vol. 2017, 2017, 5282869.
20 Zhang, Y., Wang, B., Yuan, B., Yuan, Y., Liew, K.M., Song, L., and Hu, Y., "Preparation of Large-Size Reduced Graphene Oxide-Wrapped Ammonium Polyphosphate and Its Enhancement of the Mechanical and Flame Retardant Properties of Thermoplastic Polyurethane," Industrial & Engineering Chemistry Research, Vol. 56, No. 26, 2017, pp. 7468-7477.   DOI
21 ASTM D6413 / D6413M-15, Standard Test Method for Flame Resistance of Textiles (Vertical Test), ASTM International, West Conshohocken, PA, 2015, www.astm.org
22 A Study on the Performance Standard of Nonflammable Working Clothing, 2005, Korea Occupational Safety & Health Agency.
23 ISO 5660-1 (2015), Reaction-to-fire tests - Heat Release, Smoke Production and Mass Loss Rate - Part 1 Heat Release Rate (cone calorimeter method) and Smoke Production Rate (dynamic measurement).
24 KF Standard for Accrediation of Fire Protection Clothing, 2016, Korea Fire Institute.
25 Safety Related Standards and System Improvement Plans for Expanding Demands of Chemical Fiber Materials for Nonclothing, 2014, Dankook University.
26 Bajaj, P., "Fire-Retardant Materials," Bulletin of Materials Science, Vol. 15, No. 1, 1992, pp. 67-76.   DOI
27 Bourbigot, S., and Flambard, X., "Heat Release and Flammability of High Performance Fibres: A Review," Fire and Materials, Vol. 26, No. 4-5, 2002, pp. 155-168.   DOI
28 DiGangi, J., Blum, A., Bergman, A., de Wit, C.A., Lucas, D., Mortimer, D., Schecter, A., Sheringer, M., Shaw, S.D., and Webster, T.F., "San Antonio Statement on Brominated and Chlorinated Flame Retardants," Environmental Health Perspectives, Vol. 118, No. 12, 2010, pp. 516-518.
29 Gaan, S., Salimova, V., Rupper, P., Ritter, A., and Schmid, S., Functional Textiles for Improved Performance, Protection and Health, Woodhead Publishing Ltd., Cambridge, UK, Chapter 5, 2011.
30 Zope, I.S., Foo, S., Seah, D.G.J., Akunuri A.T., and Dasari, A., "Development and Evaluation of a Water-Blown Flame Retardant Spray Coating for Cotton Fabrics," ACS Applied Materials & Interfaces, Vol. 9, No. 46, 2017, pp. 40782-40791.   DOI
31 Jankowski, P., and Kedzierski, M., "Polystyrene with Reduced Flammability Containing Halogen-Free Flame Retardants," Polimery, Vol. 58, No. 5, 2013, pp. 342-349.   DOI
32 Kim, J., and Ku, B.-C., "A Review of Flame Retarding Polyacrylonitrile (PAN) Fibers and Composites," Composites Research, Vol. 32, No. 6, 2019, pp. 342-348.
33 Pethsangave, D.A., Khose, R.V., Wadekar, P.H., and Some, S., "Deep Eutectic Solvent Functionalized Graphene Composite as an Extremely High Potency Flame Retardant," ACS Applied Materials & Interfaces, Vol. 9, No. 40, 2017, pp. 35319-35324.   DOI
34 Some, S., Shackery, I., Kim, S.J., and Jun, S.C., "Phosphorus-Doped Graphene Oxide Layer as a Highly Efficient Flame Retardant," Chemistry-A European Journal, Vol. 21, No. 44, 2015, pp. 15480-15485.   DOI
35 Hu, C., Xue, J., Dong, L., Jiang, Y., Wang, X., Qu, L., and Dai, L., "Scalable Preparation of Multifunctional Fire-Retardant Ultralight Graphene Foams," ACS Nano, Vol. 10, No. 1, 2016, pp. 1325-1332.   DOI
36 Kim, M.-J., Jeon, I.-Y., Seo, J.-M., Dai, L., and Baek, J.-B., "Graphene Phosphonic Acid as an Efficient Flame Retardant," ACS Nano, Vol. 8, No. 3, 2014, pp. 2820-2825.   DOI